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Chapter 1

Introduction

In all situations that involve uncertainties，we must do decision-makings based on some

inference. The inference will be done from the past observations for the corresponding

phenomena. We collect various types of data, build a model of the corresponding

phenomena, and estimate the unknowns. We again collect new data, find out if the

model is suitable or not, and correct the model if we need. Finally we will make

a decision through the final model. Such an inference procedure is desired that the

larger the sample size becomes, the more accurately the model can predict the future’s

phenomena. The asymptotic inference is a field to study such inference procedures and

properties of estimators under the situation where the sample size tends to infinity.

One may think that it is unrealistic to consider such a situation where the sample

size tends to infinity. However, as Ibragimov and Has’minskii [41] says by quoting the

word of Gnedenko and Kolmogorov [34],

The epistemological value of the theory of statistical estimation revealed

only by asymptotic theories.

The asymptotic inference, which gives a mathematical validity of the constructed proce-

dures and comparing methods with the another procedure, is one of the most important

steps in the prediction.

In this thesis, we are interested in the asymptotic inference for continuous-time

stochastic processes that follow some stochastic differential equations with jumps. How-

ever, as a prologue, we shall begin to introduce the general history of the asymptotic

inference briefly.
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10 CHAPTER 1. INTRODUCTION

1.1 A brief historical review of the asymptotic in-

ference

In the history of the asymptotic inference, it would be well known that several Statis-

tics Giants; Pearson, Fisher, Cramér, Wald, Le Cam, Hájek, and so on have largely

contributed to the development of the theory.

The notion of the consistency of estimators, which is the most important and basic

notion in the asymptotic theory, is suggested by Fisher [27]. After that, consistent

estimators have been sufficiently studied by many authors. It seems that Pearson, K.

suggested the method of moments; see Cramér [20], which is the first general method

to construct estimators. The maximum likelihood estimators, which is originated with

Fisher [27], are discussed in a general framework by Wald [110] and Le Cam [57],

Bayesian estimators were also discussed by Le Cam [57], and the study of the asymp-

totic inference were becoming increasingly popular.

It would be natural that the next interest was to define the best estimator. In

statistics, there was, from long ago, a notion of comparing an expected loss (risk) to

discuss the goodness of estimators. This idea goes back to Laplace or Gauss, who

proposed to minimize the expected absolute deviation or the least-squares loss. It was

reintroduced by Wald [108, 111] in a sophisticated form to the statistical scene two

decades after them, and the notion of the asymptotic efficiency, whose fundamental

notion was also probably originated with Fisher [27], comes from the fusion of the

decision theory and the asymptotic theory. Moreover the development of the modern

mathematical statistics based on the likelihood ratio by Wald, Le Cam, Hájek and

other authors improved and completed the notion of the asymptotic efficiency via the

concept of the local asymptotic normality (LAN) or more generally local asymptotic

mixed normality (LAMN); see Le Cam [58] and Jeganathan [45]. These are so called

an asymptotic risk minimization procedure.

Their theories were discussed on the extremely general framework called the statis-

tical experiment, which was merely a family of probability measures Eε = {P (ε)
θ , θ ∈ Θ}

on a σ-field of a state space, where ε > 0 and θ ∈ Θ were parameters. Therefore it

included not only static statistical models as in the traditional large sample theory but

also many dynamical models by stochastic processes. Moreover the notion of minimiz-

ing of the asymptotic risk were applied not only to the parametric framework as above

but also to the nonparametric framework. On these historical flow and the theory

itself, it is familiar in e.g. Ibragimov and Has’minskii [41], Le Cam [59], and Basawa

and Scott [8]. In this way, a general, rigorous and massive system of the asymptotic
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inference had been constructed.

Against such a background of modern statistical theories, many authors studied

the inference for stochastic processes. It would be a natural flow in the history since

the theory of stochastic processes had been developing coincidentally, and were just

beginning to be applied to some fields. One of the important and essential tools for

investigations of the inference for stochastic processes was the likelihood ratio or the

log-likelihood function.

The inference for discrete-time stochastic processes has been investigated earlier by

Wald [109]. Billingsley [9], Roussas [83, 84, 85], Prakasa Rao [76], and so on studied the

discrete-time Markovian case. For long-memory time series, the case of linear processes

that includes important AR, MA and ARMA models was studied earlier by Whittle

[112] systematically, the case of non-linear processes that includes recently well-used

ARCH and GARCH were by Tjøstheim [104]. Kreiss [51] and Jeganathan [46] discussed

the inference for linear and non-linear time series in the framework of LAN and LAMN,

respectively. For the further review, see the recent great book Taniguch and Kakizawa

[101] for the asymptotic inference for time-series.

On the other hand, the first systematic treatment of problems in the statistical

inference for continuous-time stochastic processes was due to Grenander [36]. In the

case of continuous-time processes, the calculation of the likelihood ratio is frequently

difficult. He considered a special Gaussian stationary Markov process, and tried to

calculate the likelihood ratio by the following schemes: calculate the likelihood ratio

with respect to the true distribution for a finite set of time points 0 = t0 < t1 <

. . . < tn = T and then let the sample size n → ∞ so that max1≤i≤n(ti − ti−1) → 0.

This method can not be applied to general stochastic processes but would give us an

important insight for the inference from discrete observations later.

After him, the asymptotic inference for each special type of continuous-time stochas-

tic processes has been studied based on the likelihood theory by several authors.

Billingsley [9] studied the Markov processes with the general state space. Athreya and

Keiding [3], Feigin [25] considered the Markov branching processes. Brown [18] and

Brillinger [17] studied point processes. Basawa and Brockwell [6] discussed gamma and

stable processes, and Akritas and Johnson [2] studied general Lévy processes. More-

over Kutoyants [54] studied the LAN properties for the likelihood ratio of diffusion-type

processes and point processes after the manner of Ibragimov and Has’minskii [41], and

Yoshida [115, 116] discussed the M-estimation for diffusion processes via the LAMN

property.

In 1990s, the asymptotic inference for stochastic processes began to be discussed in
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the general framework of semimartingales that was a wide class of stochastic processes

including point processes, Lévy processes, diffusion processes and also diffusion pro-

cesses with jumps. The LAMN property discussed by Basawa and Scott [8] in general

framework was applied to the class of semimartingales by Luschgy [62], and he also

introduced the new concept of the local asymptotic quadraticity (LAQ) in Luschgy [63].

Taraskin [102] extended the concept of the LAN for semimartingales to local asymptotic

infinite divisibility (LAID), and so on. On the other hand, without the LAN or the

LAMN theory, the asymptotic likelihood theory based on the notion of various infor-

mation quantities were introduced by Barndorff-Nielsen and Sørensen [11] and Küchler

and Sørensen [52]. Sørensen [98, 99] gives the concrete discussion of the asymptotic

inference for continuously observed diffusion processes with jumps using their theories.

Basawa and Prakasa Rao [7] and Prakasa Rao [80] give comprehensive explanations on

these historical flow and theories.

In these days, the higher-order asymptotic inference for semimartingales via the

asymptotic expansion approach is becoming active at the initiative of Yoshida [117,

119, 120], Sakamoto and Yoshida [87, 88], Uchida and Yoshida [107] and so on. Their

asymptotic expansion approaches, which were initiated by Yoshida, N., are practically

applied to the financial econometrics, and are expected to be powerful tools for the

study of the mathematical and applied finance; see Kunitomo and Takahashi [53],

Takahashi and Yoshida [103], Masuda and Yoshida [68] and the references therein.

Until a little before, such a statistical theory for semimartingales was possibly

only for theorists, and practitioners were not so familiar with that. However we are

compelled to wonder the situation has been changed in these days. That is, not only

professional mathematicians and statisticians but also practitioners who use statistics

in their business are becoming familiar with the term of “stochastic processes”, and

statistical inference for them is of major interest even for practitioners. It is nothing

else that there has been the kind of emphasis on the modeling by stochastic processes

in applications recently.

The remarkable tendency as above is particularly seen in the fields of econometrics

or financial engineerings. Since the appearance of two great papers in the field of

econometric; Black and Scholes [14] and Merton [70], modern economic theorists are

busy to formulate their theories to represent the dynamical change of securities’ prices

by building dynamic models via semimartingales rather than the classical econometric

theory, which is erected on the traditional static or equilibrium structure as classical

statistical mechanics. At the same time, practitioners are also busy to learn their new

theories and try to use them in their businesses. If it is doubtful, you should go to
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the corner of Finance and Marketing in some big book stores. You could see many

terminologies on stochastic calculus and mathematical statistics there. In this way, the

statistical inference for semimartingales is now becoming a standard tool not only in

academic but also even in practice.

However, it is quite another between the great advance of the inference theory for

stochastic processes and a correct understanding and application of the theory. Ac-

tually, in application, invalid ad hoc methods are sometimes used although there is

the corresponding theory that is mathematically well-established. One of the reasons

would be the mathematical difficulty of the inference theory. However it seems that

there would be more fundamental problems. One is that the cooperation among math-

ematical statisticians, applied statisticians and practitioners is not so smooth. Another

is that there still remains gap between the theory and the practice.

Fortunately, it seems that the former problem has been changing in a favorable

way recently. Many academic conferences and meetings together with professional

mathematicians, statisticians and practitioners in financial institutions are held in the

world. Therefore we are going to study further in order to solve the latter problem.

1.2 Overview of this thesis and its background

The purpose of this thesis is the asymptotic inference for the following d-dimensional

stochastic differential equations with jumps:

Xt = X0 +

∫ t

0

a(Xs) ds+

∫ t

0

b(Xs) dws +

∫ t

0

∫
�d\{0}

c(Xs−, z) r(ds, dz)

that includes some unknown quantities. Especially we are interested in the inference

from discrete observations obtained at the time points tni = ihn (i = 0, 1, 2, . . . , n);

{Xtni
}n

i=0, where hn is the length of the observational interval, w is a Wiener process,

and r is a compensated Poisson random measure; see Chapter 2 for details. If the

compensated random measure r vanishes; r ≡ 0, then we call X simply a diffusion

process.

In the history of the inference for stochastic processes, such types of models have

occupied the much attention of many statisticians as widely used models in applica-

tions. For example, Modeling prices of securities in financial markets is particularly

important; see Merton [70], Aase and Guttorp [1], Mulinacci [74], Scott [89], Gukhal

[37], and multiplicity of recent papers on the mathematical finance. There are other

applications to risk models in insurance; Gerber [32], Dufresne and Gerber [22], Em-

brechts and Shmidli [23], soil moisture models; Mtundu and Koch [75], to hydrology;
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Bodo and Thomoson [16], and to population models; Hanson and Tuckwell [40], Gut-

trop and Kulperger [38], and so on. However, in any application, observable data are

always discrete in practice, and we face the trouble of the inference for such continuous-

time models from discrete samples.

In the early period of modeling by continuous-time stochastic processes, modeling

by diffusion processes was prevalent, and estimation problems for discretely observed

diffusion processes have been studied by many authors very well. Though there are

some observation schemes, we are here interested in the one called ”rapidly increasing

experimental design”: nhn → ∞ but nh2
n → 0 as n→ ∞; it is also-called frequent data

in financial literatures. The earlier work on this scheme is seen in Prakasa-Rao [77, 78].

He studied the least squares approach. Florens-Zmirou [29] considered an estimation of

one-dimensional diffusion processes with constant diffusion coefficients under the less

restrictive condition nh3
n → 0 with convergence rate

√
nhn for a diffusion estimation.

Yoshida [118] studied the case where the drift-diffusion parameter estimation cannot be

split, and showed the joint convergence of an adaptive estimator with
√
n convergence

rate for diffusion parameter. After that, Kessler [49, 50] improved it to a more general

case with the design nhp
n → 0 for arbitrary fixed p ≥ 2. For other schemes, for

instance nhn = constant or hn = constant, see Genon-Catalot and Jacod [31], Dacunha-

Castelle and Florens-Zmirou [21], Bibby and Sørensen [12], and the references therein.

Moreover, for small diffusion models, see Uchida [105, 106] and Sørensen and Uchida

[100]. In this way, the inference for discretely observed diffusion processes have been

well discussed.

On the other hand, the inference for discretely observed diffusion processes with

jumps is still developing although jump-diffusion models are also well used in many

fields. We propose some useful methodologies for such a critical problem in this thesis.

Our work gives several estimation methods, which are practical and mathematically

valid for such extremely important models. Though the author’s work is only a small

part of the enormous history of the asymptotic statistics as described in Section 1.1,

the author strongly believes that this work provides an absolutely significant foothold

for the future’s development of the inference theory for stochastic processes.

This thesis mainly consists of three already published papers that are devoted to

the inference for stochastic differential equations with jumps from discrete observations;

Shimizu and Yoshida [96], Shimizu [92, 93], and some unpublished new results; Shimizu

[94].

In Chapter 2, we shall first present the definition of diffusion processes with jumps.

We identify two types of models with a jump mechanism. One is a finite activity model
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in which jumps occur only finitely many times in any finite time interval, and an infinite

activity model in which jumps occur infinitely many times in any finite time interval.

We introduce an aspect that the infinite activity model can be approximated by the

finite activity model in some sense under some regularity conditions. This aspect is

the key in Chapter 4. We also introduce Ito’s formula and an ergodicity for diffusion

processes with jumps, which are important in Chapter 3 and Chapter 4 to obtain

asymptotic properties of estimators.

Chapter 3 is devoted to the parametric estimation of finite activity models under the

scheme that nh2
n → 0. We assume the ergodicity of the model to discuss the asymptotic

behavior of estimators. We construct a single contrast function to estimate the drift

and the diffusion parameters jointly. The exact likelihood function would be used if we

would know the form of transition probabilities. However it is generally impossible to

write it down explicitly, therefore we have to approximate it by a suitable function. We

present an estimating function having two parts: the first part is the log likelihood of

a local Gaussian process, and the second one is modeled after the likelihood of Poisson

random measures. This estimating function divides increments of neighboring data

according to their magnitudes and assigns them those parts, that is, a small increment

that is less than or equals to a threshold rn is regarded a Brownian shock, and is assigned

to the first part that corresponds to the estimating function of the continuous part, and

a large increment that is larger than the rn is regarded a jump, and is assigned to the

second part that corresponds to the one of the discontinuous part. This threshold rn

should satisfy some order-conditions. Evaluating the probability of misclassification,

we prove the asymptotic normality of our estimator. Our estimator is of the maximum

likelihood type, which is efficient in some sense.

In Chapter 4, we consider a more general ergodic jump-diffusion whose jump part

is driven by a Lévy process z whose Lévy density f satisfies
∫
�
f(z) dz = ∞; infinite

activity models. This z can be split into two parts, the one is for a small jump part

whose jumps are less than or equal to a positive value εn(↓ 0), and the others are

for a large jump part whose jumps are larger than εn. The former can be regarded

as a small diffusion, and the latter becomes a compound Poisson Process for each n.

This is the approximation of the infinite activity models by the finite activity models;

see Chapter 2. This enables us to apply the idea of Chapter 3 to the infinite activity

models. However we have to choose the sequence εn carefully for that purpose.

For estimation of parameters in the continuous part, we can take the same procedure

as in Chapter 3. The parameters in the jump part are estimated via the method of

moments fitting the higher-order moments of large increments. However, in order to
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obtain the asymptotic normality, it needs some conditions for the intensity of large

jumps: λ(εn) =
∫
|z|>εn

f(z) dz. Therefore, our method can not always be applied to any

infinite activity model.

In Chapter 5, the nonparametric estimation is discussed in reversal. In particular,

we concentrate on the estimation of Lévy density, which is the most important in jump-

processes, in finite activity models. The procedure is the kernel density method. We

regard large increments as jumps approximately, and apply the idea of the usual density

estimation. Evaluating the negligible gap between the approximated jump size and the

true jump size, we prove the consistency of the density-type estimators in the sense

of the mean squared error. The restriction of the Lévy density which was imposed in

Chapter 3 is removed in this chapter although the experimental design becomes more

rapid; nh1+δ
n → 0 for a δ ∈ (0, 1/2).

Up to Chapter 4, we need an ergodicity of the model to obtain asymptotic results.

However, this assumption is often strong in some applications. The nonparametric pro-

cedure proposed in Chapter 5 enables us to estimate non-ergodic models from sampled

data.

In the simulation study; Section 5.4, we point out an important problem: How

should we determine the threshold rn for fixed n? As described above, rn is restricted

only by some order-conditions, and can not be determined uniquely by asymptotic

theories. However since the sample size n is finite in real data, we have to select this

threshold rn according to models and the sample size n. This is the very gap between

the theory and the practice. In Section 5.4.3 and 5.4.4, we shall give some intuitive

methods to select the threshold, and in a special case of the model, we shall propose

more theoretical and practical methods than them in Chapter 6.

1.3 General notation

1. R = (−∞,∞), R+ = [0,∞), N = {1, 2, . . .}, N0 = {0} ∪ N. Moreover B(X)

means the family of Borel sets on a normed space X.

2. (Ω,F , (Ft)t≥0, P ) is a filtered probability space with a filtration (Ft)t≥0 and a

probability measure P . We denote by E the integral with respect to P .

3. For a sequence of increasing positive numbers {tni }n
i=1 for each n ∈ N, we put

F n
i−1 := Ftni−1

, P n
i−1{ · } := P{ · |F n

i−1} and En
i−1[ · ] = E[ · |F n

i−1}.

4. For a function g(x, y), we denote the value g(x,Xtni−1
) by gi−1(x).
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5. For a stochastic flow X·, we set ∆Xt := Xt −Xt− and ∆iX
n := Xtni

−Xtni−1
.

6. The symbol Nd(µ,Σ) means a d-dimensional Gaussian distribution with the mean

vector µ and the covariance matrix Σ. As d = 1, we simply write N (µ,Σ).

7. The symbol
P→ means the convergence in probability under the measure P . The

symbol
d→ means the convergence in distribution.

8. Qn = Op(rn) means that, for every ε > 0, there exists δε > 0 and nε > 0 such

that P (|Qn/rn| > δε) < ε for any n > nε. Qn = op(rn) means that Qn/rn → 0 as

n→ ∞.

9. For κ = (κ1, . . . , κd), ∂κ := (∂κ1, . . . , ∂κd
)∗, ∂κj

:= ∂
∂κj

, ∂2
κj

:= ∂2

∂κ2
j
, ∂2

κiκj
:= ∂2

∂κi∂κj
,

and so on, where * stands for the transpose. Moreover, for any integer l, denote

∂l
κf(κ) = (∂l

κi1
···κil

f(κ))1≤i1,... ,il≤d; a tensor on (Rd)⊗l.

10. For a tensor A, we express its components with upper index, for example, if A is

a matrix, then its (k, l)-component is A(k,l). Moreover |A|2 is the sum of squares

of the components of A

11. Let un be a real valued sequence and s, x be some vectors whose components

are real valued. We denote by R(s, u, x) a real valued function for which there

exists a constant C such that

R(s, un, x) ≤ unC(1 + |x|)C

uniformly in s. Furthermore we set R̃(s, un, x) = 1 −R(s, un, x).

12. When ϑ is an unknown parameter, we express the true value of ϑ with the

subscript zero: ϑ0 is the true value of a parameter ϑ.

13. We sometimes omit the true values of parameters for simplicity of notations

without specially mentioning. For example, we simply write f(Xtni−1
) or more

simply fi−1 for f(Xtni−1
, θ0), or q(ds, dz) for qθ0(ds, dz), and so on, where θ is an

unknown parameter.

14. We often use the notation C (resp. Ck) as an universal positive constant (resp.

depending on the index k), therefore we sometimes use the same character for

different constants from line to line without specially mentioning.





Chapter 2

Diffusion processes with jumps

When statisticians observe natural phenomena, they usually suppose some dynamical

systems which have generated the obtained data. A dynamical system seems to always

be disturbed by some stochastic perturbation; noise, and the noise makes it difficult

to construct the model and to predict the future. Particularly, when we deal with

time-continuous systems, modeling of the noise is complicated.

Fortunately, we have the powerful tool to model the noise. One type of which is a

continuous noise modeled by a stochastic integral with respect to a Wiener process. The

other is a jump type noise modeled by a stochastic integral with respect to a martingale

measure generated by a point process. Stochastic processes modeled by differential

equations including such kinds of noise terms are called stochastic differential equations

(SDE) with jumps.

Our major interest of this thesis is the statistical inference for a certain class of

SDE’s with jumps; diffusion processes with jumps, or simply called jump-diffusions,

from data obtained in the past. In this chapter, we give the definition and some

properties about diffusion processes with jumps, and present some auxiliary results

which are useful in the later chapters.

2.1 Stochastic differential equations with jumps

2.1.1 Solution-processes

On a probability space (Ω,F , P ) with a filtration (Ft)t≥0, we consider a d-dimensional

stochastic differential equation with jumps: X0 is a random variable, and

dXt = A(ω, t) dt+B(ω, t) dwt +

∫
E
C(ω, t, z) r(ω, dt, dz), (2.1)

19
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where E = R
d \ {0}, w∗

t = (w1
t , . . . , w

r
t ) (t ≥ 0) is an r-dimensional Wiener process,

A(ω, t) and B(ω, t) are jointly measurable and Ft-adapted processes, C(ω, t, z) is also

jointly measurable, but an Ft-predictable process for each z ∈ E , r(ω, dt, dz) is a com-

pensated Poisson martingale measure of the form r(ω, dt, dz) = p(ω, dt, dz)− q(dt, dz),

p is an extended Poisson random measure independent of w, and q is its intensity

measure, that is, q(dt, dz) = E[p(·, dt, dz)]; see Jacod and Shiryayev [43] for details of

random measures.

Denote by (DT ,GT ) the measurable space of càdlàg functions x = (xt)0≤t≤T for each

T > 0 with a filtration Gt = σ{xs ; s ≤ t}.
Let us present a general definition of diffusion processes with jumps.

Definition 2.1 A stochastic process X = (Xt)0≤t≤T satisfying the equation (2.1) is

called a diffusion process with jumps, or a jump-diffusion if there exist jointly mea-

surable (s, x) functions a(s, x) and b(s, x), which are Gs+-measurable for each s such

that, for almost all ω ∈ Ω and s ∈ [0, T ], A(ω, s) = a(s,X(ω)), B(ω, s) = b(s,X(ω)).

Moreover there exist a jointly measurable (s, x, z) function c(s, x, z), which are Gs−-

measurable for each s and z ∈ E such that, for almost all ω ∈ Ω, s ∈ [0, T ] and z ∈ E ,

C(ω, s, z) = c(s,X(ω), z).

In this thesis, we particularly consider the following d-dimensional Markovian dif-

fusion processes with jumps: X0 = x, and

dXt = a(Xt) dt+ b(Xt) dwt +

∫
E
c(Xt−, z) r(ω, dt, dz), (2.2)

where x is a random variable.

Definition 2.2 A solution-process to (2.2) is a càdlàg process X defined on the filtered

probability space (Ω,F , (Ft)t≥0, P ) endowed with (w, p) as the driving terms, such that

for each t ≥ 0,

Xt = x+

∫ t

0

a(Xs) ds+

∫ t

0

b(Xs) dws +

∫ t

0

∫
E
c(Xs−, z) r(ω, ds, dz).

The following classical result of the existence and the uniqueness of the solution-

process is found in Jacod and Shiryayev [43]; see Theorem III, 2.32.

Theorem 2.1 Assume the following two conditions

(i) (Local Lipschitz continuity) For each n ∈ N, there exist a constant Ln and a

function ζn : E → R+ with
∫
E ζ

2
n(z) f(z) dz <∞ such that, for any |x| ≤ n, |y| ≤

n,

|a(x) − a(y)| + |b(x) − b(y)| ≤ Ln|x− y|, |c(x, z) − c(y, z)| ≤ ζn(z)|x− y|.
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(ii) (Linear growthness) For each n ∈ N, there are Ln and ζn as above, such that

for all x ∈ R
d,

|c(x, z)| ≤ ζn(z)(1 + |x|).

Then the equation (2.2) has the unique solution X on the probability space (Ω,F , P ).

Here the uniqueness of the solution means that, P{Xt = Yt, for all t ∈ R+} = 1 if

there exists an another solution-process Y .

2.1.2 A jump mechanism

A solution-process X to (2.2) is a càdlàg process, which transits continuously unless

a jump occurs. Jumps are driven by the point process pt(z) = p((0, t] × (−∞, z]),

that is, X has a jump ∆Xt = c(Xt−, z) if the point process pt(z) has a jump ∆pt =

pt(z + dz) − pt−(z) at a point (t, z). Therefore pt may be considered as the random

counting measure of jumps of a càdlàg process X, that is,

p(dt, dz) =
∑
s≥0

1{∆Xs �=0}1{(s,z) ;∆Xs=c(Xs−,z)}(dt, dz) (2.3)

On the other hand, we impose the following assumptions on the intensity measure

q throughout this thesis: q({t} × E) = 0 for each t ∈ R+, and it has the form

q(dt, dz) = dt× f(z) dz, (2.4)

where f is a density of a positive σ-finite measure. In this case p is called a time-

homogeneous Poisson random measure, and these conditions are equivalent to that q

is the compensator of p. Hence r((0, t], ·) = (p − q)((0, t], ·) becomes a martingale

measure.

In order to construct such a Poisson random measure, it is convenient to consider

that the jump mechanism of X is controlled by an R
d-valued Lévy process z = (zt)t≥0

defined on (Ω,F , {Ft}t≥0, P ) whose Lévy density is f(z). That is, we consider that

X has a jump if z does. Then the expression of (2.3) is rewritten as follows:

p(dt, dz) =
∑
s≥0

1{∆zs �=0}1{(s,∆zs)}(dt, dz). (2.5)

We call such a p a random measure associated to z. Intuitively speaking, zt has a jump

at time t, then X has a jump c(Xt−,∆zt), and this is actually an integer-valued random

measure; see Jacod and Shiryayev [43], Proposition II.1.16. If (zt)t≥0 is a compound

Poisson process, which is the most important case in applications, we have the following

proposition:
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Proposition 2.1 Let N be a Poisson process with the intensity λ and {εi}i∈� is an

i.i.d. sequence with a probability density F (z). Let p be a random measure (2.5)

associated to a compound Poisson process zt =
∑Nt

i=1 εi. Then q(dt, dz) = dt×λF (z) dz.

Therefore we see that f(z) = λF (z). More generally, the following proposition implies

that the intensity measure q of a random measure p of the form (2.5) also satisfies

(2.4).

Proposition 2.2 Let A be a Borel subset of R
d with 0 �∈ Ā, and g is a Borel function

which is finite on A. Let f be the Lévy density of a Lévy process (zt)t≥0. Then

E

[∫ t

0

∫
A

g(z) p(ds, dz)

]
= t

∫
A

g(z)f(z) dz.

See e.g. Protter [82] for these results. We have (2.4) if g ≡ 1. Proposition 2.2 implies

that the integral
∫

A
f(z) dz can be interpreted as the average of the number of jumps

whose sizes are in the set A per unit of time.

Now, let us suppose that
∫
E c(x, z)f(z) dz <∞ for all x ∈ R

d. Under this condition,

the stochastic integral with respect to the compensated random measure r can be split

into the two integrals with respect to p and q; see Jacod and Shiryayev [43], Proposition

II.1.28, and the SDE of (2.2) can be rewritten as follows:

dXt = ã(Xt) dt+ b(Xt) dwt +

∫
E
c(Xt−, z) p(dt, dz),

where ã(x) = a(x) − ∫
E c(x, z)f(z) dz. This SDE implies that X follows the diffusion

process dXt = ã(Xt) dt+ b(Xt) dwt while zt does not jump.

In this way, considering that the random measure p is a random measure associ-

ated to a Lévy process, we can easily understand the pathwise properties of diffusion

processes with jumps. Therefore we often stand on such a point of view in the latter

chapters to make the intuitive discussion be clear.

2.2 Finite and infinite activity for jump parts

In this section, let us investigate a structure of jump’s mechanism.

Let z = (zt)t≥0 be a multidimensional Lévy process with the Lévy density f . If z

is a compound Poisson process with f = λF then Proposition 2.1 implies that z can

be represented as

zt =
∑

s∈[0,t]

∆zs =

∫ t

0

∫
E
z p(ds, dz), (2.6)
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where p is a random measure associated to z. Since
∫
E f(z) dz = λ <∞, the stochastic

integral in (2.6) is finite for each t > 0. However if the above z is a general Lévy process

then
∫
E f(z) dz would possibly be infinite; f can have a singularity at the origin. Then

there can be infinitely many small jumps in any finite time interval, and the sum (2.6)

does not necessarily converge. On the other hand, it is well known that a Lévy measure

satisfies, for any ε > 0, that∫
|z|>ε

f(z) dz <∞,

∫
0<|z|≤ε

|z|2f(z) dz <∞. (2.7)

The first condition implies that the sum z
(ε)
t =

∑
s∈[0,t] ∆zs1{|∆zs|>ε} is finite almost

surely, that is, it is a compound Poisson process. We have the following Lévy-Ito

decomposition for the process z − z(ε); see Protter [82], Theorem I.42.

Proposition 2.3 Let z = (zt)t≥0 be a d-dimensional Lévy process, and r be a compen-

sated Poisson random measure associated to zt. Then there exist constants a, σ and a

d-dimensional standard Brownian motion B such that

zt − z
(ε)
t = at+ σBt + lim

δ↓0

∫ t

0

∫
δ≤z≤ε

z r(ds, dz) a.s. (2.8)

for any ε > 0, where z
(ε)
t =

∫ t

0

∫
|z|>ε

z p(ds, dz). The terms in the right-hand side and

z(ε) are independent each other. the constant a might depend on ε. In particular, if

σ ≡ 0 then we call z a pure jump Lévy process.

Again let us consider the SDE (2.2). Let p(ε) be a random measure associated to a

compound Poisson process z(ε) and q(ε) be its intensity measure. It follows from Propo-

sition 2.2 that q(ε)(dt, dz) = dt× f (ε)(z) dz, where f (ε)(z) = f(z)1{|z|>ε}. Furthermore,

let r(ε) = p(ε) − q(ε). Noticing the above decomposition, we can rewrite the SDE as

follows:

dXt = ã(ε)(Xt) dt+ b(Xt) dwt + dB
(ε)
t +

∫
E
c(Xt−, z) p(ε)(dt, dz), (2.9)

where

ã(ε)(x) = a(x) −
∫
E
c(x, z) f (ε)(z) dz,

B
(ε)
t =

∫ t

0

∫
0<|z|<ε

c(x, z) r(ds, dz).

The last term in the decomposed SDE (2.9) corresponds to the jump part driven by

a compound Poisson process z(ε). If the underlying z is a compound Poisson process,
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then B(ε) vanishes by taking ε = 0, and we call such a model the Poisson type or the

finite activity model. Otherwise B(ε) corresponds to the jump part driven by a Lévy

process with infinitely many small jumps, and we call such a model the Lévy type or

the infinite activity model.

On the latter condition of (2.7), we set σ2(ε) :=
∫
0<|z|≤ε

|z|2f(z) dz. This cor-

responds to the dispersion of the small jump part B(ε). The following proposition

implies that the process B(ε) can be regarded as a Brownian noise with small covari-

ance if ε > 0 is small; when the dispersion σ(ε) converges to zero more slowly than the

level of truncation.

Proposition 2.4 Suppose that ε−1σ(ε) → ∞ as ε→ 0. Then

σ(ε)−1B(ε) d−→ B

in D[0, 1] space equipped with the uniform metric, where B is a d-dimensional standard

Brownian motion.

See Asmussen and Rosinski [4] for the proof. On the other hand, if σ(ε) converges to

zero so fast then we can regard B(ε) as the negligible noise. Consequently, it indicates

that an infinite activity model can be approximated by a finite activity model. We

stand on such a viewpoint in Chapter 4.

2.3 Ito’s formula and a differential operator

When we discuss various problems for stochastic differential equations (with jumps),

one of the most important tools is Ito’s formula, which is well known in the stochastic

calculus. It provides an integral-differential calculus for sample paths of semimartin-

gales. Ito’s formula says that a “smooth” function of a semimartingale is a semimartin-

gale again, and provides its decomposition.

In this section, we introduce a version of Ito’s formula for diffusion processes with

jumps of the form (2.2), and give some auxiliary results to be used repeatedly in

Chapter 3 and 4.

We denote by L an integro-differential operator for a C2-class function g of the form

Lg(x) = ∂∗xg(x)a(x) +
1

2
tr
[
∂2

xg(x)b(x)b
∗(x)

]
+

∫
E
{g(x+ c(x, z)) − g(x) − ∂∗xg(x)c(x, z)}f(z) dz,
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This operator is known for the infinitesimal generator of X as a Markov process, and

it plays an important role in the stochastic calculus although we do not describe the

details about their properties here; see e.g. Ethier and Kurtz [24]. In this thesis, this

is used as just an operator to make the notation be simple. Using the operator L, Ito’s

formula for (2.2) is provided as follows.

Theorem 2.2 (Ito’s formula) Let X be a solution-process to the stochastic differen-

tial equation (2.2) and let g be a C2-class function. Assume that
∫
E c(x, z)f(z) dz <∞

for any x ∈ R
d. Then g(X) is a semimartingale with jumps that follows the following

stochastic differential equation:

g(Xt) − g(x) −
∫ t

0

Lg(Xs) ds =

∫ t

0

∂∗xg(Xs)b(Xs) dws +

∫ t

0

∫
E
Dg(Xs−, z) r(ds, dz),

where Dg(x, z) = g(x+ c(x, z)) − g(x).

The following results are useful throughout this thesis. The one is a version of

Fubini’s theorem for conditional distributions on a σ-field, and the other is the Ito-

Taylor expansion for semimartingales.

Proposition 2.5 Let Y be an Ft-adapted càdlàg process, and assume that

E

[
sup

0≤s≤t
|Ys|

]
<∞ (2.10)

for each t ≥ 0. Then E[Yt|Fs] (s ≤ t) is Fs ⊗ B(R+)-measurable and

E

[∫ b

a

Yt dt
∣∣∣Fs

]
=

∫ b

a

E[Yt|Fs] dt a.s.

for any a, b ∈ R+.

Proof． For (ω, t) ∈ Ω × R+, n ∈ N and s ∈ [0, t], we define

Fn(ω, t) :=
2n−1∑
k=0

E
[
Y k+1

2n t

∣∣∣Fs

]
1( kt

2n , k+1
2n t](t).

Notice that limn→∞
∑2n−1

k=0 Y (k+1)t
2n

1( kt
2n , k+1

2n t](t) = Yt for almost all (ω, t) ∈ Ω × R+ since

Y is càdlàg. Moreover notice that Fn is Fs-measurable for each t ≥ 0. Therefore it

follows for any A ∈ Fs that

E
[

lim
n→∞

Fn(ω, t)1A(ω)
]

= lim
n→∞

E

[
E

[
2n−1∑
k=0

Y (k+1)t
2n

1( kt
2n , k+1

2n t](t)1A(ω)
∣∣∣Fs

]]
(2.11)
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= E

[
lim

n→∞

2n−1∑
k=0

Y (k+1)t
2n

1( kt
2n , k+1

2n t](t)1A(ω)

]
(2.12)

= E[Yt1A]. (2.13)

We used Lebesgue’s convergence theorem in the equalities (2.11) and (2.12) by noticing

the assumption (2.10) and that
∣∣∣∑2n−1

k=0 Y (k+1)t
2n

1( kt
2n , k+1

2n t](t)1A(ω)
∣∣∣ ≤ sup0≤s≤t |Ys| for

almost all (ω, t) ∈ Ω×R+. The equality (2.13) implies that limn→∞ Fn(ω, t) = E[Yt|Fs].

Hence E[Yt|Fs] is Fs ⊗B(R+)-measurable since Fn(ω, t) is Fs ⊗B(R+)-measurable.

Moreover, since E[|Yt||Fs] is nonnegative and also Fs ⊗B(R+)-measurable by the

same argument as above, we see from (2.10) and Fubini’s theorem that

0 ≤
∫∫

[a,b]×Ω

E[|Yt||Fs] dt× dP (ω) ≤
∫ b

a

E[|Yt|] dt <∞.

Therefore E[Yt|Fs] is integrable on [a, b] × Ω, and by Fubini’s theorem again, we see

that
∫ b

a
E[Yt|Fs] dt is Fs-measurable and

E

[(∫ b

a

E[Yt|Fs] dt

)
1A

]
=

∫ b

a

E[Yt1A] dt = E

[(∫ b

a

Yt dt

)
1A

]

for any A ∈ Fs. This implies the consequence. �

Proposition 2.6 Let g be a C2(l+1)-class function whose derivatives up to 2(l + 1)th

are of polynomial growth. Assume that the coefficient a(x), b(x) and c(x, z) in (2.2)

are C2l-class functions whose derivatives with respect to x up to 2lth are of polynomial

growth. Furthermore, assume that suptE|Xt|p < ∞ for p > 0 large enough. Then the

following expansion holds for t > s and ∆ = t− s:

E[g(Xt)|Fs] =
l∑

j=0

∆jL
j

j!
g(Xs) +

∫ ∆

0

∫ u1

0

· · ·
∫ ul

0

E
[
Ll+1g(Xs+ul+1

)|Fs

]
du1 · · · dul+1.

Proof． Note that all the stochastic integrals with respect to the Wiener process w

and the random martingale measure r which appear in the sequel become martingales

from the assumptions: see Protter [82] for details.

It follows by Ito’s formula, Proposition 2.5 and a martingale property that

E[g(Xt)|Fs] = g(Xs) +

∫ t

s

E[Lg(Xv)|Fs] dv

= g(Xs) +

∫ ∆

0

E[Lg(Xv+s)|Fs] dv.
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Applying Ito’s formula to Lg(Xv+s), we have

E[g(Xt)|Fs] = g(Xs) + ∆Lg(Xs) +

∫ ∆

0

∫ v

0

E[L2g(Xu1+s)] du1dv.

Applying Ito’s formula again to L2g(Xu1+s), we have

E[g(Xt)|Fs] = g(Xs) + ∆Lg(Xs) +

∫ ∆

0

∫ v

0

L2g(Xs) du1dv

+

∫ ∆

0

∫ v

0

∫ u1

0

E[L3g(Xu2+s)] du2du1dv

= g(Xs) + ∆Lg(Xs) +
∆2

2
L2g(Xs)

+

∫ ∆

0

∫ v

0

∫ u1

0

E[L3g(Xu2+s)] du2du1dv.

In this way, we can obtain the consequence by the induction. �

2.4 Ergodic diffusion processes with jumps

In the statistical inference, the assumption of an ergodicity of the processes is sometimes

important to investigate the asymptotic behavior of estimators. Actually we assume

an ergodicity of X to (2.2) in Chapter 3 and 4.

General ergodic theorems for Markov processes are usually described as the combi-

nation of two kinds of theorems. One is on the existence of the limit in probability of

the time-mean:

lim
T→∞

1

T

∫ T

0

f(Xt) dt, (2.14)

where X is a stochastic process and f is a measurable function. The other is on the

existence of the limit for a transition probability p(t, x, A) of a Markov process or its

time-mean:

lim
T→∞

p(T, x,A) or lim
T→∞

1

T

∫ T

0

p(t, x, A) dt, (2.15)

and the cases where these limits do not depend on the initial state X0 are of major

interest.

In this thesis, we often assume the former ergodicity (2.14) of diffusion processes

with jumps. This is so-called the weak law of large numbers for a stochastic process

X.
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LetX be a solution-process to (2.2) and p(t, x, A) be a transition probability defined

by

p(t, x, A) = P{Xs+t ∈ A|Xs = x},

where A is a Borel subset on R
d and t, s ≥ 0. Since X is a Markov process, the above

p(t, x, A) is independent of s because of the Markov property of X, and the distribution

of X is uniquely determined by p. In particular, if π be a probability distribution of

the initial value X0 then πTt :=
∫
p(t, x, A) π(dx) is a probability distribution of Xt for

each t > 0.

The distribution π is said to be invariant if and only if the equality πTt = π holds for

all t ∈ R+. The existence of the invariant measure for a Markov process is essential in

the ergodic theory since the limit (2.14) is written by a kind of integral by the invariant

measure. Moreover, note that if the initial distribution π is invariant then all of the

distributions of Xt for each t > 0 is also π, that is, X is stationary. Hereafter we use

the word “stationarity” in this sense. Such π is also called the stationary distribution.

Now let us give the definition of the ergodicity in this thesis of a solution-process

to (2.2).

Definition 2.3 Let X be a solution-process to (2.2). The process X is ergodic if and

only if there exists an invariant measure π such that

1

T

∫ T

0

f(Xt) dt
p−→

∫
�d

f(x) π(dx) (T → ∞)

for any π-integrable function f defined on R
d.

This might not be a general definition of an ergodicity but the one we require as

an assumption in the later chapters. However it is generally difficult to check this

ergodicity for general diffusion processes with jumps. Nevertheless we can find some

sufficient conditions of the ergodicity for some special diffusion processes with jumps.

Meyn and Tweedie [71, 72] gave a general ergodic theory for general Markov pro-

cesses, and one could find some ergodic jump-diffusions in above sense by investigating

their papers carefully. Applying their theory to jump-diffusions (2.2) in which the co-

efficient of the jump part has the form c(x, z) = ζ(x)z for a function ζ , Masuda [67]

provided more explicit conditions for the ergodicity. For example, the irreducibility,

Foster-Lyapunov criteria, the stationarity and some moment conditions with respect

to the invariant measure π yield the exponential ergodicity which is stronger than the

one in our sense. Moreover, Masuda [66] says that Lévy driven Ornstein-Uhlenbeck
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processes can be ergodic under some mild conditions. Otherwise, some stability condi-

tions, that is, the irreducibility and Feller property, yield the positive Harris recurrency,

and they deduce 1/T
∫ T

0
f(Xt) dt →

∫
f(x) dπ P -almost surely. One can find this re-

sult by the combination of the results in Kwon and Lee [56] and Meyn and Tweedie

[71]. Considering the above facts, we shall give some examples of ergodic diffusions

with jumps.

Example 2.1 Consider multidimensional Lévy driven Ornstein-Uhlenbeck processes:

dXt = −θXt dt+ dzα
t , (2.16)

where θ and α are also multidimensional parameters, zα
t is a Lévy process with a

Lévy density fθ satisfying
∫
E |z|qfθ(z) dz < ∞ for some q > 0. This is one of the

most important models in applications. In this model, it is known that there exists

the unique invariant measure π such that
∫ |x|q dπ(x) < ∞, and X is exponentially

ergodic if π is the initial distribution. See Masuda [66] for details.

Example 2.2 Consider the following 1-dimensional SDE’s with a multidimensional

parameter θ, and σ1, σ2 > 0:

dXt = b(Xt, θ) dt+
[
σ1

(
1 +X2

t

)−1/2
+ σ2

]
dwt + dzθ

t , (2.17)

If zθ is a compound Poisson process with
∫
E z

2fθ(z) dz < ∞ then X is irreducible,

and if the Foster-Lyapunov criterion: 2xb(x) ≤ −κx2 for some κ > 0 is satisfied for

sufficiently large |x|, then X is exponentially ergodic.

Example 2.3 Consider the following SDE’s with one-dimensional parameters:

dXt = θ1Xt dt+ σ dwt + θ2Xt dz
θ3
t , (2.18)

where σ > 0 and zθ is a compound Poisson process with
∫
E z

2fθ(z) dz < ∞. X is

ergodic if the Foster-Lyapunov criterion: 2θ1 + θ2
2

∫
E z

2fθ3(z) dz < 0 is satisfied.





Chapter 3

Parametric estimation in finite

activity models

This chapter is devoted to the parametric inference for finite activity jump-diffusion

models. We construct a single contrast function to estimate parameters in the drift,

the diffusion and the jump part jointly. The contrast function has two parts: one is

the log-likelihood of a local Gaussian process, which is the direct discretization of the

log-likelihood of an usual diffusion process and corresponds to the contrast function for

parameters in continuous part of jump-diffusions. The other is the contrast function

modeled after the log-likelihood of Poisson random measures. The key idea is the

jump-judging procedure, which is described in Section 3.2.2, and this idea would be

also the key in whole of this thesis.

3.1 Setting of the model

Let us consider a d-dimensional solution process X to the following stochastic differ-

ential equation with jumps on a filtered probability space (Ω,F , (Ft)t≥0, P ):⎧⎨
⎩ dXt = a(Xt, θ) dt+ b(Xt, σ) dwt +

∫
E
c(Xt−, z, θ) (p− qθ)(dt, dz),

X0 = x0,
(3.1)

where E = R
d \ {0}, θ ∈ Θ ⊂ R

m1 , σ ∈ Π ⊂ R
m2 are parameters, and α = (θ, σ)

belongs to a parameter space Ξ = Θ × Π which is a compact convex subset of R
m1 ×

R
m2 . Let m = m1 + m2. (wt)t≥0 is an r-dimensional Wiener process，p(dt, dz) is a

time-homogeneous Poisson random measure on R+ ×R
d, and qθ(dt, dz) is its intensity

measure, that is, E[p(dt, dz)] = qθ(dt, dz). We set qθ(dt, dz) = fθ(z) dz dt and fθ(z) =

31
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λ(θ)Fθ(z), where λ(θ) is a strictly positive and bounded function of θ and Fθ is a

probability density. The coefficients a and c are known R
d-valued Borel functions

defined on R
d × Θ, R

d × E × Θ respectively, and b is a known R
d ⊗ R

r-valued Borel

function defined on R
d × Π.

One of the most simple but important examples of one-dimensional case is written

as follows:

dXt = ã(Xt, µ) dt+ b̃(Xt, σ) dwt + c̃(Xt−, ϑ) dzϑ
t , (3.2)

where zϑ is a Lévy process with parameter ϑ. This belongs to the class of (3.1) with

c(x, z, θ) = c̃(x, ϑ)z, a(x, θ) = ã(x, µ) +

∫
E
c(x, ϑ)zfϑ(z) dz and θ = (µ, ϑ).

We study estimation of the parameter α = (θ, σ) from discrete observations. For

that purpose, we observe n+ 1 data {Xtni
}n

i=0, t
n
i = ihn, and show the consistency and

the asymptotic normality of an estimator under the rapidly experimental design such

that hn → 0, nhn → ∞, nh2
n → 0.

3.2 Discussion and conclusions

3.2.1 Assumptions and examples

We make the following assumptions.

A 1 There exists a constant L > 0 and a function ζ(z) which satisfies |ζ(z)| ≤ C(1 +

|z|)C for a constant C > 0 such that

|a(x, θ0) − a(y, θ0)| + |b(x, σ0) − b(y, σ0)| ≤ L|x− y|,
|c(x, z, θ0) − c(y, z, θ0)| ≤ ζ(z)|x− y|, |c(x, z, θ0)| ≤ ζ(z)(1 + |x|).

A 2 The process X is ergodic and stationary for α = α0 with an invariant measure π

in the sense of Section 2.4.

A 3 For every p ≥ 1,

sup
t≥0

E[|Xt|p] <∞.

A 4 For fixed θ and σ, the derivatives ∂l
xa(x, θ) and ∂l

xb(x, σ) (l = 1, 2) exist on R
d and

they are continuous in x. Moreover, for fixed x, the derivatives ∂l
θa(x, θ) and ∂l

σb(x, σ)

(l = 1, 2) exist on Θ and Π respectively, and a, b, and their all derivatives are of

polynomial growth in x uniformly in α: for l = 0, 1, 2,

|∂l
xa(x, θ)|, |∂l

xb(x, σ)|, |∂l
θa(x, θ)|, |∂l

σb(x, σ)| ≤ C(1 + |x|)C .
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A 5 inf
x
|c(x, z, θ0)| ≥ c0|z| for some c0 > 0．

A 6 There exist constants r, K > 0 and γ > 3 such that fθ0(z)1{|z|≤r} ≤ K|z|γ, and

that

sup
θ∈Θ

∫
E
|z|pfθ(z) dz <∞

for all p ≥ 1.

A 7 For each θ and x, the mapping z �→ y = c(x, z, θ) has an inverse z = c−1(x, y, θ)

which is differentiable with respect to y, and we set

Ψθ(y, x) := fθ

(
c−1(x, y, θ)

)
J(x, y, θ),

where J(x, y, θ) is the absolute value of the Jacobian of c−1(x, y, θ).

A 8 The matrix β(x, σ) := b(x, σ)b∗(x, σ) is a positive definite and inf
x,σ

detβ(x, σ) > 0.

A 9 The function Ψθ(y, x) is differentiable with respect to x and y, and three times

continuously differentiable with respect to θ, Moreover we assume that

|∂k
θ Ψθ(y, x)| ≤ L1(y)(1 + |x|)C (k = 0, 1, 2, 3), (3.3)

|∂x∂
l
θΨθ(y, x)| ≤ L2(y) (l = 0, 1, 2), (3.4)

where L1 and L2 are bounded and dy-integrable functions. Furthermore,

|∂y∂
l
θΨθ(y, x)| ≤ C(1 + |y|)C(1 + |x|)C (l = 0, 1, 2), (3.5)

∫
sup

θ

∣∣∂k
θ log Ψθ(y, x) · Ψθ0(y, x)

∣∣ dy ≤ C(1 + |x|)C (k = 0, 1, 2, 3). (3.6)

A 10 The following identifiability condition holds: σ = σ0 if and only if detβ(x, σ) =

detβ(x, σ0) for almost all x. Moreover, θ = θ0 if and only if a(x, θ) = a(x, θ0) and

Ψθ(y, x) = Ψθ0(y, x) for almost all x and y.

A 11 A sequence of real valued functions {ϕn(x, y)}n∈� satisfies the following proper-

ties: 0 ≤ ϕn ≤ 1 and ϕn → 1 dy × dπ-a.s. as n → ∞. There exist some M > 0 such

that

ϕn(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if (x, y) ∈
{

inf
θ∈Θ

Ψθ(y, x) > M

}

0 if (x, y) ∈
{

inf
θ∈Θ

Ψθ(y, x) ≤ εn

} ,
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where εn = b
−1/10
n for a sequence bn satisfying bn → ∞, nh2

nbn → 0 and
bn
nhn

→ 0.

Moreover,

sup
x,y

|∂xϕn| + sup
x,y

|∂yϕn| = O(ε−1
n ), (3.7)

and

∂xϕn = ∂yϕn = 0 on

{
inf
θ∈Θ

Ψθ(y, x) ≤ εn

}
. (3.8)

Let us give some examples of Ψθ(y, x) and check conditions in A9.

Example 3.1 We consider the following one-dimensional stochastic differential equa-

tion.

dXt = a(Xt) dt+ b(Xt) dwt + c(Xt−, θ) dzθ
t , (3.9)

where zθ is a Lévy process with Lévy density fθ(z). We assume, for some M, K > 0,

c(x, θ) =
1

c
, fθ(z) = Mzα(K − z)β1{0≤z≤K},

and θ = (c, α, β), where α, β > 3.

Ψθ(y, x) = Mc(cy)α(K − cy)β,

log Ψθ(y, x) = logM + (α + 1) log c+ α log y + β log(K − cy).

Noticing the parameter space Θ is compact, it is easy to verify (3.3) - (3.5). Moreover

all
∫

supθ

∣∣∂k
θ log Ψθ(y, x) · Ψθ0(y, x)

∣∣ dy become finite, so (3.6) is satisfied.

Example 3.2 For SDE (3.9), we suppose that supp(fθ) ⊂ R+ and

c(x, θ) =
1

c
, fθ(z)1{0<z≤M} = e−

γ
z 1{0<z≤M}

and put θ = (c, γ), where c > 0, γ > 0 and M > 0. It is easy to check A9 in the

neighborhood of the origin since

Ψθ(y, x) = e−
γ
cy , log Ψθ(y, x) = − γ

cy

on the set {0 < z ≤ M}.



3.2. DISCUSSION AND CONCLUSIONS 35

Example 3.3 For SDE (3.9), we suppose that

c(x, θ) =
1

c
, fθ(z) =

αβ

Γ(β)
zβ−1e−αz,

and put θ = (c, α, β), where α > 0, β > 4. Then

Ψθ(y, x) =
αβ

Γ(β)
(cy)β−1e−αcy,

log Ψθ(y, x) = β logα− log Γ(β) + (β − 1) log cy − αcy.

Then

|∂k
θ Ψθ(y, x)|, |∂x∂

l
θΨθ(y, x)|, |∂y∂

l
θΨθ(y, x)|

are all dominated by C (1 + | log y|) yβ′
e−α′y for some C > 0, β ′ > 0, α′ > 0, so

Conditions (3.3) - (3.5) are satisfied. Moreover we obtain

sup
θ

∣∣∂k
θ log Ψθ(y, x)

∣∣ ≤ C (1 + |y| + | log y|) .

This implies (3.6).

Under Conditions A1 and A6, the stochastic differential equation (3.1) can be

rewritten as follows:

dXt = ā(Xt, θ) dt+ b(Xt, σ) dwt +

∫
E
c(Xt−, z, θ) p(dt, dz), (3.10)

where ā(x, θ) = a(x, θ)−
∫
E
c(x, z, θ) qθ(dt, dz). This expression implies that X follows

diffusion process dXt = ā(Xt, θ) dt + b(Xt, σ) dwt, in the interval in which no jump

occurred. We start with the stochastic differential equation (3.10) to construct the

contrast function.

3.2.2 Contrast functions and efficient estimators

Now we present a contrast function for estimating parameters. In Section 2.3, we show

how to obtain it.

Definition 3.1 For
2

γ + 1
≤ ρ <

1

2
, we define the contrast function ln(α) as follows．

ln(α) = l̄n(θ, σ) + l̃n(θ),
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where

l̄n(α) = − 1

2hn

n∑
i=1

(X̄i,n)∗(θ)β−1
i−1(σ)X̄i,n(θ)1{|∆iXn|≤hρ

n}

−
n∑

i=1

1

2
log detβi−1(σ)1{|∆iXn|≤hρ

n},

l̃n(θ) =
n∑

i=1

{
log Φn(θ,Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n}

− hn

n∑
i=1

∫
Φn(θ,Xtni−1

, y) dy,

X̄i,n(θ) = Xtni
−Xtni−1

− hnāi−1(θ), Φn(θ, x, y) = Ψθ(y, x)ϕn(x, y).

Intuitively speaking, this contrast function is very natural since l̄n(α) corresponds

to the contrast for an usual diffusion process, and l̃n(θ) does to the discretization of

the likelihood function of an compound Poisson process with Lévy density fθ.

Our main theorem is the following. The proof will be presented in Section 3.5

Theorem 3.1 Under Conditions A1 to A11 and nhn → ∞ as n→ ∞，the estimator

α̂n which satisfies

ln(α̂n) = sup
α∈Ξ

ln(α)

is consistent:

α̂n
P−→ α0 (n→ ∞).

If, in addition, nh2
n → 0 and the true value α0 is in the interior of Ξ，then(√
nhn(θ̂n − θ0),

√
n(σ̂n − σ0)

)
d−→ Nm(0, K−1),

where

K :=

(
K1 0

0 K2

)
,

K
(p,q)
1 =

∫
(∂θp ā)

∗β−1(∂θp′ ā)(x, α0) dπ +

∫∫
∂θpΨθ0∂θp′Ψθ0

Ψθ0

(y, x) dy dπ,

K
(p,q)
2 =

1

2

∫
tr
[
(∂σqβ)β−1(∂σq′β)β−1

]
(x, σ0) dπ.
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Remark 3.1 We impose Assumption A6 in order to show the asymptotic results under

the asymptotics nh2
n → 0. However we can relax A6 to, for example, “fθ0 is bounded”

if we impose a more rapid experimental design as nh1+δ
n → 0 for a δ ∈ (0, 1). The

setting in Chapter 5 is such a case.

Remark 3.2 We use a truncation function ϕn to ensure the P -integrability of the

logarithm term and its derivatives with respect to parameters. If we knew

sup
i,n

E
[
∂y∂

l
θ log Ψθ(∆iX

n, Xtni−1
)
]
<∞ (l = 0, 1, 2)

by some reasons, ϕn would not be needed, however ϕn is needed generally.

Remark 3.3 This result can be applied to pure jump type processes with b(x, σ) ≡ 0,

that is, X is a solution process to the following stochastic differential equation:

dXt = a(Xt, θ) dt+

∫
E

c(Xt−, z, θ) (p− qθ)(dt, dz).

The contrast function of jump part is similar to the non-degenerate case since we es-

timate jump parameters from only the number of jumps and their amplitudes. For

diffusion part, however, we can not make use of l̄n(α) any more because we can not

approximate the path of X by the local Gaussian approximation in the no jump in-

tervals. We can overcome this difficulty by estimating drift parameters as least square

estimators, that is,

l̄n(θ) = − 1

2hn

n∑
i=1

(X̄i,n)∗(θ)X̄i,n(θ)1{|∆iXn|≤hρ
n},

In this case, θ̂n has also consistency and asymptotic normality with asymptotic variance

K, K(p,q) =

∫∫
∂θpΨθ0∂θp′Ψθ0

Ψθ0

(y, x) dy dπ. The proof is the same as for the non-

degenerate diffusion case.

Remark 3.4 The asymptotic efficiency for θ̂n is obtained since K1 is the asymptotic

variance of the estimator for the continuously observed ergodic diffusion processes with

jumps; see Sørensen [99], which discusses the inference for diffusion processes with

jumps from continuous observations under the setting which includes the non-ergodic

case. Particularly, when you compute the asymptotic variance in the ergodic case, it

could be clearer to refer Section 3 in Barndorff-Nielsen and Sørensen [11], which is a

review of the general likelihood theory.
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3.2.3 Construction of contrast functions

In our setting, the observed data are discrete, hence we have to decide whether jumps

occur or not in an interval from only the increment |∆iX
n|, although that is a stochastic

decision which may sometimes include some misjudgments. This criterion should be

chosen depending on n, and increase the accuracy of judgements as n tends to infinity.

The way we will take is the following: for ρ ∈ [0, 1/2), if the increment exceeds hρ
n in

an interval then we regard it as the interval in which a jump has occurred and if not,

as the interval in which no jump occurred. This is because the increment of a diffusion

without jumps exceeds hρ
n with small probability, and the increment of a diffusion with

a single jump also exceeds hρ
n with a large probability. Although they are intuitive

argument, these are justified by Lemma 3.2 described below.

The value ρ has to be chosen carefully. For instance if ρ is too large, and therefore

hρ
n is too small, the probability of getting the increment hρ

n by the continuous diffusion

can not be ignored, on the other hand, if ρ is too small, and therefore hρ
n is too large,

we cannot ignore the probability of getting an increment less than hρ
n when a jump

occurs in an interval. Later we will choose ρ as 2/(γ + 1) ≤ ρ < 1/2.

First, we state the well-known Grownwall’s inequality. This lemma is often used in

this theses.

Lemma 3.1 (Gronwall’s inequality) Let f(t) and g(t) be continuous functions such

that g(t) ≥ 0. For a function u(t), suppose that

u(t) ≤ f(t) +

∫ t

c

g(s)u(s) ds,

for t > c. Then the following inequality is valid: for t > c,

u(t) ≤ f(t) +

∫ t

c

g(s)f(s) exp

(∫ t

s

g(v) dv

)
ds.

The following result and its idea is the key throughout this thesis.

Lemma 3.2 Define random times τn
i and ηn

i as

τn
i := inf

{
t ∈ [tni−1, t

n
i ); |∆Xt| > 0

}
,

ηn
i := sup

{
t ∈ [tni−1, t

n
i ); |∆Xt| > 0

}
.

If the infimum or supremum on the right hand side does not exist, we define the random

times as tni . Assume Conditions A1, A3 and A6. Then, for any ρ ∈ [0, 1/2) and any
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p ≥ 1,

P n
i−1

{
sup

t∈[tni−1,τn
i )

|Xt −Xtni−1
| > hρ

n

}
= R(α, hp

n, Xtni−1
), (3.11)

P n
i−1

{
sup

t∈[ηn
i ,tni )

|Xtni
−Xt| > hρ

n

}
= R(α, hp

n, Xtni−1
), (3.12)

where R is given in Section 1.3, and each function R does not depend on i.

Proof． First，we show (3.11)．On the interval [tni−1, τ
n
i )，X follows the stochastic

differential equation

dXt = ā(Xt) dt+ b(Xt) dwt,

hence for t ∈ [tni−1, τ
n
i )，

|Xt −Xtni−1
| =

∣∣∣∣∣(t− tni−1)ā(Xtni−1
) +

∫ t

tni−1

(ā(Xs) − ā(Xtni−1
)) ds+

∫ t

tni−1

b(Xs) dws

∣∣∣∣∣
≤ hn|ā(Xtni−1

)| + sup
u∈[tni−1,tni )

∣∣∣∣∣
∫ u

tni−1

b(Xs) dws

∣∣∣∣∣ + L

∫ t

tni−1

|Xs −Xtni−1
| ds.

Gronwall’s inequality yields that

|Xt −Xtni−1
| ≤ hn|ā(Xtni−1

)| + sup
u∈[tni−1,tni )

∣∣∣∣∣
∫ u

tni−1

b(Xs) dws

∣∣∣∣∣
+ LeLhnhn

(
hn|ā(Xtni−1

)| + sup
u∈[tni−1,tni )

∣∣∣∣∣
∫ u

tni−1

b(Xs) dws

∣∣∣∣∣
)
.

If n is sufficiently large，we obtain that

|Xt −Xtni−1
| ≤ C

(
hn|ā(Xtni−1

)| + sup
u∈[tni−1,tni )

∣∣∣∣∣
∫ u

tni−1

b(Xs) dws

∣∣∣∣∣
)
, (3.13)

therefore Markov’s inequality and Burkholder-Davis-Gundy’s inequality yield

P n
i−1

{
sup

t∈[tni−1,τn
i )

|Xt −Xtni−1
| > hρ

n

}

≤ P n
i−1

{
Chn|ā(Xtni−1

)| > hρ
n

2

}
+ P n

i−1

{
C sup

u∈[tni−1,tni )

∣∣∣∣∣
∫ u

tni−1

b(Xs) dws

∣∣∣∣∣ > hρ
n

2

}

≤ Cp

⎧⎨
⎩hp(1−ρ)

n En
i−1

[
|ā(Xtni−1

)|p
]

+ h−2pρ
n En

i−1

⎡
⎣ sup

u∈[tni−1,tni )

∣∣∣∣∣
∫ u

tni−1

b(Xs) dws

∣∣∣∣∣
2p
⎤
⎦
⎫⎬
⎭
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≤ R(α, hp(1−ρ)
n , Xtni−1

) + Cph
−2pρ
n En

i−1

[∣∣∣∣∣
∫ tni

tni−1

b2(Xs) ds

∣∣∣∣∣
p]

= R(α, hp(1−2ρ)
n , Xtni−1

).

We used Lemma 3.5 (3.17) in the last equality. We should notice that one can take p

arbitrary larger here.

The almost same argument holds for (3.12)．Actually，for t ∈ [ηn
i , t

n
i )，

|Xtni
−Xt| =

∣∣∣∣(tni − t)ā(Xt) +

∫ tni

t

(ā(Xs) − ā(Xt)) ds+

∫ tni

t

b(Xs) dws

∣∣∣∣ .
By the same argument as (3.11)

|Xtni
−Xt| ≤ C

(
hn|ā(Xtni

)| + sup
u∈[tni−1,tni )

∣∣∣∣∣
∫ u

tni−1

b(Xs) dws

∣∣∣∣∣
)
, (3.14)

and then,

P n
i−1

{
sup

t∈[ηn
i ,tni )

|Xtni
−Xt| > hρ

n

}

≤ Cp

{
hp(1−ρ)

n En
i−1

[|ā(Xtni
)|p]+ h−2pρ

n En
i−1

[∣∣∣∣∣
∫ tni

tni−1

b2(Xs) ds

∣∣∣∣∣
p]}

.

Lemma 3.5 (3.17) completes the proof. �

By these facts, the probability whether the value of |∆iX
n| exceeds hρ

n or not is

evaluated in the next lemma. In the following discussion, let Jn
i be the number of

jumps in the interval [tni−1, t
n
i ) and we set

{|∆iX
n| ≤ Lhρ

n} =
2⋃

j=0

Cn
i,j, {|∆iX

n| > Lhρ
n} =

2⋃
j=0

Dn
i,j,

where

Cn
i,0 = {Jn

i = 0, |∆iX
n| ≤ Lhρ

n} ,
Cn

i,1 = {Jn
i = 1, |∆iX

n| ≤ Lhρ
n} ,

Cn
i,2 = {Jn

i ≥ 2, |∆iX
n| ≤ Lhρ

n} ,
Dn

i,0 = {Jn
i = 0, |∆iX

n| > Lhρ
n} ,

Dn
i,1 = {Jn

i = 1, |∆iX
n| > Lhρ

n} ,
Dn

i,2 = {Jn
i ≥ 2, |∆iX

n| > Lhρ
n} .
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Lemma 3.3 Assume Conditions A1, A3, A5 and A6. Let
2

γ + 1
≤ ρ <

1

2
, where γ is

the constant given in condition A6. For any p ≥ 1, as n→ ∞

P n
i−1{Cn

i,0} = e−λ0hnR̃(α, hp
n, Xtni−1

), P n
i−1{Dn

i,0} = e−λ0hnR(α, hp
n, Xtni−1

),

P n
i−1{Cn

i,1} = R(α, h3
n, Xtni−1

), P n
i−1{Dn

i,1} = λ0hne
−λ0hnR̃(α, h2

n, Xtni−1
),

P n
i−1{Cn

i,2} ≤ λ2
0h

2
n, P n

i−1{Dn
i,2} ≤ λ2

0h
2
n,

where R and R̃ are given in Section 1.3.

Proof． It is obvious that P n
i−1{Cn

i,2} ≤ h2
nλ

2
0, and so is P n

i−1{Dn
i,2}. On Cn

i,1,

P n
i−1{Cn

i,1}

≤
[
P

{∣∣∣(Xtni
−Xτn

i
) + (Xτn

i −−Xtni−1
) + ∆Xτn

i

∣∣∣ ≤ hρ
n,
∣∣∆zτn

i

∣∣ > 2hρ
n

c0

∣∣Fn
i−1, J

n
i = 1

}

+ P

{∣∣∆zτn
i

∣∣ ≤ 2hρ
n

c0

∣∣Fn
i−1, J

n
i = 1

}]
P{Jn

i = 1},

where ∆zτn
i

has density Fθ0 . If
∣∣∣(Xtni

−Xτn
i
) + (Xτn

i − −Xtni−1
) + ∆Xτn

i

∣∣∣ ≤ hρ
n then

|Xtni
−Xτn

i
| + |Xτn

i − −Xtni−1
| ≥ c0

∣∣∆zτn
i

∣∣− hρ
n,

hence, applying Lemma 3.2, we have

P n
i−1{Cn

i,1} ≤ λ0hne
−λ0hnP n

i−1

{
sup

t∈[tni−1,τn
i )

|Xt −Xtni−1
| + sup

t∈[τn
i ,tni ]

|Xtni
−Xt| > hρ

n

}

+ λ0hne
−λ0hn

∫ 2hρ
n/c0

−2hρ
n/c0

M |z|γ dz

= R(α, hp
n, Xtni−1

) + Chρ(γ+1)+1
n

= R(α, h3
n, Xtni−1

).

On Cn
i,0, applying Lemma 3.2 again，we have

P n
i−1{Cn

i,0} = P n
i−1{Jn

i = 0} − P n
i−1 {|∆iX

n| > hρ
n, J

n
i = 0}

= e−λ0hn − P n
i−1

{
|Xτn

i
−Xtni−1

| > hρ
n, τ

n
i = tni

}
= e−λ0hnR̃(α, hp

n, Xtni−1
).

Finally,

P n
i−1{Dn

i,0} = P n
i−1{Jn

i = 0} − P n
i−1

{
Cn

i,0

}
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= e−λ0hnR(α, hp
n, Xtni−1

),

and

P n
i−1{Dn

i,1} = P n
i−1{Jn

i = 1} − P n
i−1 {|∆iX

n| ≤ hρ
n, J

n
i = 1}

= λ0hne
−λ0hn −R(α, h3

n, Xtni−1
)

= λ0hne
−λ0hnR̃(α, h2

n, Xtni−1
). �

This lemma implies that we can judge the interval [tni−1, t
n
i ) has no jump if |∆iX

n| ≤ hρ
n

and the interval has a single jump if |∆iX
n| > hρ

n, and that we can ignore the events

which include more than two jumps in the interval.

Remark 3.5 One can easily find in the above two lemmas that the ”jump-judgement”

threshold; hρ
n can be replaced by Lhρ

n for any constant L > 0, and the main result in

this chapter; Theorem 3.1 is of course valid for such thresholds, that is, the asymptotic

behavior of estimators are invariant for any constant L > 0. However here we consider

only the trivial threshold as L ≡ 1 since we are interested in the asymptotic inference

in this chapter. It would be a big problem in practice that how we choose the suitable

L in addition to ρ according to the sample size n. Such a practical problem will be

discussed in Chapter 6.

Let (zt)t≥0 be a compound Poisson process which is independent of w and has the

form zt =
∑Nt

i=1 εi，where (Nt)t≥0 is a Poisson process with the intensity λ(θ)，(εi)i∈�
is a sequence of d-dimensional random vectors which are independent of each other and

identically distributed with density Fθ(x). N and (εi)i∈� are also independent of each

other. In our setting, the random measure p can be regarded as the one associated

with the process z; see Chapter 2.

p(dt, dz) =
∑
s≥0

1{∆zs �=0}1(s,∆zs)(dt, dz).

Hence if the flow z· has a jump of size z at time t, then X will have a jump of the size

c(Xt−, z, θ) at the same time.

Now let us discuss the approximation of the transition probability. First, we con-

sider the transition probability from Xtni−1
to Xtni

in the case of single jump in the

interval [tni−1, t
n
i ). We set τn

i := inf{t; |∆Xt| > 0, tni−1 ≤ t < tni }. Since no jump occurs

in [tni−1, τ
n
i ), we approximate the transition by the one of

Xτn
i − = Xtni−1

+ āi−1(τ
n
i − tni−1) + bi−1Z,
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where Z ∼ Nd(0, (τ
n
i − tni−1)I). The above X is not the same as the solution process to

(3.1), but the aboveXtni−1
has the same value as the one of (3.1). Next, since we suppose

that no jump occurs after a jump at the time τn
i , we can take the same approximation

as above in [τn
i , t

n
i ), that is,

Xtni
= Xτn

i − + ā(Xτn
i
)(tni − τn

i ) + b(Xτn
i
)Z ′ + c(Xτn

i −,∆zτn
i
),

where Z ′ ∼ Nd(0, (t
n
i − τn

i )I). Let φ(x;A,B) be a Gaussian density with the mean

vector A and variance matrix B. Since the distribution of the jump time τn
i conditional

on {Jn
i = 1} becomes the uniform distribution on [tni−1, t

n
i ),

P n
i−1{Xtni

∈ A, Jn
i = 1}/P{Jn

i = 1}

=

∫
A

∫
z

∫
x′

∫ tni

tni−1

1

hn
φ
(
x′;Xtni−1

+ āi−1(s− tni−1), βi−1(s− tni−1)
)
×

× φ (x;x′ + c(x′, z) + ā(x′ + c(x′, z))(tni − s), β(x′ + c(x′, z))(tni − s)) ×
× F (z) dsdx′dzdx.

We denote by pd
i,n(x) the above probability density function. Secondly, using the local

Gaussian approximation for Jn
i = 0，

P n
i−1{Xtni

∈ A, Jn
i = 0}/P{Jn

i = 0} =

∫
A

φ
(
x;Xtni

+ āi−1hn, βhn

)
dx.

We denote by pc
i,n(x) the integrand in the right-hand side. Finally,

P n
i−1{Xtni

∈ A, Jn
i ≥ 2} = Op(h

2
n).

Since

P n
i−1{Xtni

∈ A} = P n
i−1{Xtni

∈ A, Jn
i = 0} + P n

i−1{Xtni
∈ A, Jn

i = 1}
+ P n

i−1{Xtni
∈ A, Jn

i ≥ 2}

=
2∑

j=0

[
P n

i−1{Xtni
∈ A,Cn

i,j} + P n
i−1{Xtni

∈ A,Dn
i,j}

]
,

and by Lemma 3.3, we have the following relations:

P n
i−1{Xtni

∈ A,Cn
i,0} = e−λ0hn

∫
A

1{|x−Xtn
i−1

|≤hρ
n}p

c
i,n(x) dx,

P n
i−1{Xtni

∈ A,Cn
i,1} ≤ P n

i−1{Cn
i,1} = Op(h

3
n),

P n
i−1{Xtni

∈ A,Cn
i,2} = Op(h

2
n),
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P n
i−1{Xtni

∈ A,Dn
i,0} ≤ P{Dn

i,0} = Op(h
3
n),

P n
i−1{Xtni

∈ A,Dn
i,1} = λ0hne

−λ0hn

∫
A

1{|x−Xtn
i−1

|>hρ
n}p

d
i,n(x) dx,

P n
i−1{Xtni

∈ A,Dn
i,2} = Op(h

2
n).

Therefore we can approximate the transition density pi,n(x) by

log pi,n(x)

≈ 1{|x−Xtn
i−1

|≤hρ
n} log

(
pc

i,n(x)e−λ0hn
)

+ 1{|x−Xtn
i−1

|>hρ
n} log

(
pd

i,n(x)λ0hne
−λ0hn

)
.

By the way, in the expression

pd
i,n(x) =

∫
z

∫
x′

∫ tni

tni−1

1

hn
φ
(
x′;Xtni−1

+ āi−1(s− tni−1), βi−1(s− tni−1)
)
×

× φ (x;x′ + c(x′, z) + ā(x′ + c(x′, z))(tni − s), β(x′ + c(x′, z))(tni − s)) ×
× Fθ0(z) ds dx

′ dz,

we can approximate φ to δ-function if hn decreases rapidly, and then

pd
i,n(x) ≈

∫
z

∫
x′
δXtn

i−1
(x′)δx−x′(c(x′, z))Fθ0(z) dx

′ dz

=

∫
y

∫
x′
δXtn

i−1
(x′)δx−x′(y)Fθ0

(
c−1(x′, y)

)
J(x′, y, θ0) dx′ dy

= Fθ0

(
c−1(Xtni−1

, x−Xtni−1
)
)
J(Xtni−1

, x−Xtni−1
, θ0)

= λ−1
0 Ψθ0(x−Xtni−1

, Xtni−1
).

Moreover, since λ(θ) =

∫∫
Ψθ(y, x) dy dπ, λ(θ) can be approximated by the data as

1

n

n∑
i=1

∫
Ψθ(y,Xtni−1

) dy,

thanks to the ergodicity of X. These considerations lead the contrast function in

Definition 3.1.

3.3 Moment estimates in the finite activity case

In this section, we introduce some useful moment inequalities, and they will be used

repeatedly in the proofs below.
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First, we prepare some notations. We consider the following inequality which is

immediately obtained from the expression of the stochastic differential equation (3.1):

for a constant p ∈ N,

|Xt −Xtni−1
|p ≤ 3p−1

{∣∣∣∣∣
∫ t

tni−1

a(Xs) ds

∣∣∣∣∣
p

+

∣∣∣∣∣
∫ t

tni−1

b(Xs) dws

∣∣∣∣∣
p

+

∣∣∣∣∣
∫ t

tni−1

∫
c(Xs−, z) (p− q)(ds, dz)

∣∣∣∣∣
p }

. (3.15)

Let

Ht :=

∣∣∣∣
∫ t

ti−1n

a(Xs) ds

∣∣∣∣
p

+

∣∣∣∣∣
∫ t

tni−1

b(Xs) dws

∣∣∣∣∣
p

,

Mt :=

∫ t

tni−1

∫
c(Xs−, z) (p− q)(ds, dz),

and also

Nt :=

∫ t

tni−1

∫
|c(Xs−, z)|2 (p− q)(ds, dz).

We obtain the following lemma.

Lemma 3.4 Assume Conditions A1, A3 and A6. For p = 2q, q ∈ N, tni−1 ≤ t ≤ tni，

En
i−1 [|Mt|p] ≤ CpE

n
i−1

[∫ ∫ t

tni−1

|c(Xs, z)|p q(ds, dz)
]
.

Proof． This proof follows from Bichteler and Jacod [13].

By using Doob’s inequality，

En
i−1

[
sup

tni−1≤s≤t
|Ms|2

]
≤ 4En

i−1

[|Mt|2
] ≤ 4En

i−1 [|〈M,M〉t|]

≤ 4En
i−1

[∫ ∫ t

tni−1

|c(Xs, z)|2 q(ds, dz)
]
,

hence Lemma 3.4 holds for q = 1. Next we suppose that Lemma holds for p = 2q. We

notice that [M,M ]t = Nt + 〈M,M〉t，for all p ∈ N，then

|[M,M ]t|p ≤ 2p−1(|Nt|p + |〈M,M〉t|p).
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Using the Burkholder-Davis-Gundy’s inequality and the above inequality，

En
i−1

[|Mt|2p
]

≤ CpE
n
i−1 [|Nt|p + 〈M,M〉pt ]

≤ CpE
n
i−1

[∫ ∫ t

tni−1

|c(Xs, z)|2p q(ds, dz) +

(∫ ∫ t

tni−1

|c(Xs, z)|2 q(ds, dz)
)p]

.

Applying Jensen’s inequality to the last second term, we have

En
i−1

[|Mt|2p
] ≤ CpE

[∫ ∫ t

tni−1

|c(Xs, z)|2p q(ds, dz)

]
.

Therefore Lemma holds for p = 2q+1. �

Lemma 3.5 Assume Conditions A1, A3 and A6. For 2 ≤ k, k ∈ N, t ∈ [tni−1, t
n
i ]，

En
i−1

[
|Xt −Xtni−1

|k
]
≤ Ck|t− tni−1|(1 + |Xtni−1

|)k. (3.16)

If g is a function defined on R
d × Ξ and is of polynomial growth in x uniformly in α,

then it follows that

En
i−1 [|g(Xt, α)|] ≤ C(1 + |Xtni−1

|)C . (3.17)

Proof． First, we consider the case p = 2q, q ∈ N．Let us notice the inequality

(3.15). Applying the linear growthness of a, b and Burkholder-Davis-Gundy’s inequal-

ity, we easily obtain that

En
i−1[Ht] ≤ Cp|t− tni−1|p/2(1 + |Xtni−1

|)p + Cp

∫ t

tni−1

En
i−1

[
|Xs −Xtni−1

|p
]
ds. (3.18)

Applying Lemma 3.4 and the linear growth of c(x, z), we obtain

En
i−1 [|Mt|p] ≤ Cp|t− tni−1|(1 + |Xtni−1

|)p + Cp

∫ t

tni−1

En
i−1

[
|Xs −Xtni−1

|p
]
ds. (3.19)

the inequalities (3.18)，(3.19) and the Gronwall’s inequality yield，for all q ∈ N，

En
i−1

[
|Xt −Xtni−1

|p
]
≤ Cp|t− tni−1|(1 + |Xtni−1

|)p.

For arbitrary k ≥ 2, if we write k =
∑l

q=0 δq2
q by the binary expansion, where δq = 0

or 1 then

En
i−1

[
|Xt −Xtni−1

|k
]

= En
i−1

[
l∏

q=0

|Xt −Xtni−1
|δq2q

]
.
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Therefore we obtain the inequality (3.16) by using Cauchy-Schwarz’s inequality repeat-

edly.

On (3.17), we can write

En
i−1 [|g(Xt, α)|] ≤ CEn

i−1

[
(1 + |Xt|)C

]
≤ C

(
1 + |Xtni−1

|C + En
i−1

[
|Xt −Xtni−1

|C
])
,

and (3.16) ends the proof． �

Remark 3.6 If we take the same argument as in the proof of Lemma 3.5 then we

obtain the following moment inequality: let k ≥ 1, tni−1 ≤ t ≤ tni . For any p ≥ 1,

En
i−1

[
|Xt −Xtni−1

|k1Cn
i,0

]
≤ Ck|t− tni−1|k/2e−λ0hn(1 + |Xtni−1

|)k +R(α, hp
n, Xtni−1

).(3.20)

Lemma 3.6 Assume Conditions A1, A3 and A4 - A6. Let X̄i,n = Xtni
− Xtni−1

−
hnāi−1(θ0). For all kj = 1, 2, . . . , d (j = 1, 2, 3, 4),

En
i−1

[
X̄

(k1)
i,n 1Cn

i,0

]
= R(α, h2

n, Xtni−1
), (3.21)

En
i−1

[
X̄

(k1)
i,n X̄

(k2)
i,n 1Cn

i,0

]
= hne

−λ0hnβ
(k1,k2)
i−1 +R(α, h2

n, Xtni−1
), (3.22)

En
i−1

[
X̄

(k1)
i,n X̄

(k2)
i,n X̄

(k3)
i,n 1Cn

i,0

]
= R(α, h2

n, Xtni−1
), (3.23)

En
i−1

[
X̄

(k1)
i,n X̄

(k2)
i,n X̄

(k3)
i,n X̄

(k4)
i,n 1Cn

i,0

]
= h2

ne
−λ0hn

(
β

(k1,k2)
i−1 β

(k3,k4)
i−1 + β

(k1,k3)
i−1 β

(k2,k4)
i−1 + β

(k1,k4)
i−1 β

(k2,k3)
i−1

)
+R(α, h3

n, Xtni−1
). (3.24)

Proof． We prove (3.24); the others are done similarly．
Let Y be a solution to the following stochastic differential equation

dYt = ā(Yt) dt+ b(Yt) dwt,

which is independent of Jn
i . A simple calculation deduces the multidimensional case

of Lemma 7 in Kessler [50], that is,

En
i−1

[
Ȳ

(k1)
i,n Ȳ

(k2)
i,n Ȳ

(k3)
i,n Ȳ

(k4)
i,n

]
= h2

n

(
β

(k1,k2)
i−1 β

(k3,k4)
i−1 + β

(k1,k3)
i−1 β

(k2,k4)
i−1 + β

(k1,k4)
i−1 β

(k2,k3)
i−1

)
+R(α, h3

n, Xtni−1
). (3.25)
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Since Jn
i is independent of Fn

i−1, we have

En
i−1

[
X̄

(k1)
i,n X̄

(k2)
i,n X̄

(k3)
i,n X̄

(k4)
i,n 1{Jn

i =0}
]

= En
i−1

[
Ȳ

(k1)
i,n Ȳ

(k2)
i,n Ȳ

(k3)
i,n Ȳ

(k4)
i,n 1{Jn

i =0}
]

= En
i−1

[
Ȳ

(k1)
i,n Ȳ

(k2)
i,n Ȳ

(k3)
i,n Ȳ

(k4)
i,n

]
P0 {Jn

i = 0}
= h2

ne
−λ0hn

(
β

(k1,k2)
i−1 β

(k3,k4)
i−1 + β

(k1,k3)
i−1 β

(k2,k4)
i−1 + β

(k1,k4)
i−1 β

(k2,k3)
i−1

)
+R(α, h3

n, Xtni−1
).

On the other hand,

En
i−1

[
X̄

(k1)
i,n X̄

(k2)
i,n X̄

(k3)
i,n X̄

(k4)
i,n 1{Jn

i =0}
]

= En
i−1

[
X̄

(k1)
i,n X̄

(k2)
i,n X̄

(k3)
i,n X̄

(k4)
i,n 1Cn

i,0

]
+ En

i−1

[
X̄

(k1)
i,n X̄

(k2)
i,n X̄

(k3)
i,n X̄

(k4)
i,n 1Dn

i,0

]
.

According to (3.16) and Lemma 3.3，∣∣∣En
i−1

[
X̄

(k1)
i,n X̄

(k2)
i,n X̄

(k3)
i,n X̄

(k4)
i,n 1Dn

i,0

]∣∣∣
≤

√
En

i−1

[
(X̄

(k1)
i,n X̄

(k2)
i,n X̄

(k3)
i,n X̄

(k4)
i,n )2

]
P n

i−1{Dn
i,0}

≤
√
En

i−1 [C (|∆iXn|8 + |āi−1hn|8)]P n
i−1{Dn

i,0}
≤ R(α, hp

n, Xtni−1
).

This completes the proof. �

3.4 Limit theorems and some remarks

The asymptotic properties of estimators are usually deduced from the asymptotic be-

havior of the estimating function. We therefore prepare some limit theorems for trian-

gular arrays of the data. Since we assumed the ergodicity for the continuous data such

as A2; the weak law of large numbers, this property is inherited to the discontinuous

array.

Our contrast function is divided into two parts, the discretization of the likelihood

of the continuous part and the one of the jump part. The limit theorems corresponding

to the continuous part can be proved as if the data are from a diffusion process, and

the proofs are similar to those of classical limit theorems for arrays by diffusion data,

see e.g. Kessler [50]. On the other hand, the limit theorems corresponding to the

discontinuous part; Proposition 3.4, are proved by a kind of complicated, but useful
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techniques. That argument will be used again in Section 3.5. In addition, we describe

some remarks, in which it will be described that those theorems can be applied to our

contrast functions.

In the sequel, we denote by bn a real valued sequence satisfying

bn → ∞, nh2
nbn → 0,

bn
nhn

→ 0.

There certainly exists such a sequence; e.g. if hn = n−2/3 then bn = n1/4 and so on.

Proposition 3.1 Assume Conditions A1 - A3, A5 - A7, hn → 0 and nhn → ∞.

Moreover suppose that g(n) is a function: R
d×Ξ → R which satisfies the following con-

ditions: |g(n)(x, α)|4 ≤ L(x, α),
∣∣∂xg

(n)(x, α)
∣∣ ≤ O(

√
bn)(1 + |x|)C and

∣∣∂αg
(n)(x, α)

∣∣ ≤
C(1+ |x|)C, where L is a π-integrable function for all α, and that there exist a function

g for each α such that, as n→ ∞,

g(n)(x, α) −→ g(x, α) π-a.s.

Then g is a π-integrable function and the following (i)，(ii) and (iii) hold as n→ ∞:

(i) sup
α∈Ξ

∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α) −

∫
g(x, α) π(dx)

∣∣∣∣∣ P−→ 0,

(ii) sup
α∈Ξ

∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α)1{|∆iXn|≤hρ

n} −
∫
g(x, α) π(dx)

∣∣∣∣∣ P−→ 0,

(iii) sup
α∈Ξ

∣∣∣∣∣ 1

nhn

n∑
i=1

g
(n)
i−1(α)1{|∆iXn|>hρ

n} − λ0

∫
g(x, α) π(dx)

∣∣∣∣∣ P−→ 0.

Proof． The π-integrability of g(x) is led from the uniform integrability of g(n)(x, α).

Let us prove that each convergence holds for fixed α. We start with the proof of (i)．

P

{∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α) −

∫
g(x, α) π(dx)

∣∣∣∣∣ > ε

}

≤ P

{∣∣∣∣∣1n
n∑

i=1

g
(n)
i−1(α) − 1

nhn

∫ nhn

0

g(n)(Xs, α) ds

∣∣∣∣∣ > ε

3

}

+ P

{∣∣∣∣ 1

nhn

∫ nhn

0

g(n)(Xs, α) ds− 1

nhn

∫ nhn

0

g(Xs, α) ds

∣∣∣∣ > ε

3

}

+ P

{∣∣∣∣ 1

nhn

∫ nhn

0

g(Xs, α) ds−
∫
g(x, α)π(dx)

∣∣∣∣ > ε

3

}
.
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The third term on the right-hand side converges to zero by the assumption of ergodicity.

Let us call the first and second terms P 1
n and P 2

n , respectively, then

P 1
n ≤ 3

ε
E

[∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α) − 1

nhn

∫ nhn

0

g(n)(Xs, α)ds

∣∣∣∣∣
]

≤ 3

ε
E

[
1

nhn

n∑
i=1

∫ tni

tni−1

|g(n)(Xs, α) − g
(n)
i−1(α)| ds

]
.

Applying Taylor’s formula and Schwarz’ inequality, we see that

P 1
n ≤ 3

nhnε

n∑
i=1

∫ tni

tni−1

(
E
[
|Xs −Xtni−1

|2
]) 1

2

×
(
E

[(∫ 1

0

∂xg
(n)(Xtni−1

+ u(Xs −Xtni−1
)) du

)2
]) 1

2

ds.

The inequalities (3.16) and (3.17) of Lemma 3.5 yield

P 1
n ≤ 3

nhnε

n∑
i=1

∫ tni

tni−1

(
E
[
C|s− tni−1|(1 + |Xtni−1

|)C
]) 1

2 ×

×
(
E
[
O(bn)(1 + |Xtni−1

|C)
]) 1

2
ds

≤ O(
√
bn)

nhnε

n∑
i=1

(∫ tni

tni−1

|s− tni−1|1/2 ds

)

≤ O(
√
hnbn).

Moreover

P 2
n ≤ 3

εnhn

∫ nhn

0

E|g(n)(Xt, α) − g(Xt, α)| dt

=
3

ε

∫
|g(n)(x, α) − g(x, α)| dπ.

This converges to zero by Lebesgue’s convergence theorem.

Next we show the convergence (iii)．What we should show are the following (a)

and (b) thanks to Lemma 9 in Genon-Catalot and Jacod [31]:

(a)
n∑

i=1

En
i−1

[
1

nhn

g
(n)
i−1(α)1{|∆iXn|>hρ

n}

]
P−→ λ0

∫
g(x, α) dπ(x),

(b)

n∑
i=1

En
i−1

[
1

n2h2
n

(
g

(n)
i−1(α)

)2

1{|∆iXn|>hρ
n}

]
P−→ 0.
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(a)：By the same argument as for (i), it is sufficient to show that

In := P

{∣∣∣∣∣ 1

nhn

n∑
i=1

g
(n)
i−1(α)P n

i−1 {|∆iX
n| > hρ

n} − λ0
1

nhn

∫ nhn

0

g(n)(Xs, α) ds

∣∣∣∣∣ > ε

}

−→ 0.

This is easily seen as follows:

In ≤ 1

ε
E

[
1

nhn

n∑
i=1

∫ tni

tni−1

∣∣∣∣g(n)
i−1(α)

1

hn
P n

i−1 {|∆iX
n| > hρ

n} − λ0g
(n)(Xs, α)

∣∣∣∣ ds
]

≤ 1

nhnε

n∑
i=1

∫ tni

tni−1

[
E

∣∣∣∣∣g(n)
i−1(α)

(
1

hn

P n
i−1 {|∆iX

n| > hρ
n} − λ0

)∣∣∣∣∣
+ λ0E|g(n)

i−1(α) − g(n)(Xs, α)|
]
ds

≤ 1

nhnε

n∑
i=1

∫ tni

tni−1

[√
E|g(n)

i−1(α)|2
√
E

∣∣∣∣ 1

hn
P n

i−1 {|∆iXn| > hρ
n} − λ0

∣∣∣∣
2

+ λ0E|g(n)
i−1(α) − g(n)(Xs, α)|

]
ds = O(

√
hnbn).

Here we applied Lemma 3.3 to the term P n
i−1 {|∆iX

n| > hρ
n} and the same argument

as the proof of (i) to the term E|g(n)
i−1(α) − g(n)(Xs, α)|.

(b)：

P

{∣∣∣∣∣ 1

n2h2
n

n∑
i=1

(
g

(n)
i−1(α)

)2

P n
i−1 {|∆iX

n| > hρ
n}
∣∣∣∣∣ > ε

}

≤ 1

n2h2
nε

n∑
i=1

E

∣∣∣∣(g(n)
i−1(α)

)2

P n
i−1 {|∆iX

n| > hρ
n}
∣∣∣∣

≤ 1

n2hnε

n∑
i=1

√
E
∣∣∣g(n)

i−1(α)
∣∣∣4E

∣∣∣∣ 1

hn
P n

i−1 {|∆iXn| > hρ
n}
∣∣∣∣
2

= O

(
1

nhn

)
.

We can easily deduce (ii) for each fixed α from (i) and (iii) since

1

n

n∑
i=1

g
(n)
i−1(α)1{|∆iXn|≤hρ

n} =
1

n

n∑
i=1

g
(n)
i−1(α) − hn

(
1

nhn

n∑
i=1

g
(n)
i−1(α)1{|∆iXn|>hρ

n}

)
.

Finally we have to show the uniformity of the convergence in α. We only show

(i); the uniformity in (ii) can be proved similarly and that in (iii) is shown by the
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same argument as the proof of more general Proposition 3.4, so we omit the proof

here. Let sn(α) =
1

n

n∑
i=1

g
(n)
i−1(α), and we regard this as a random element taking values

in (C(Ξ), ‖ · ‖∞). It suffices to see the tightness of this sequence; see Remark B.1 in

Appendix B. Since we already showed the convergence of the marginal distributions of

sn(α), the tightness is implied by

sup
n
E

[
sup

α
|∂αsn(α)|

]
<∞;

see Corollary B.1. And this is clear if we use the stationarity and Assumption A3. �

Remark 3.7 Below, we sometimes use (i) as

g(n)(x, α) =

∫
∂k

θ Φn(θ, x, y) dy (k = 0, 1, 2).

We are able to check the above conditions for these g(n) by A9 and A11. Actually, for

these g(n),

|g(n)(x, α)| ≤
(∫

L1(y) dy

)
(1 + |x|)C

from condition (3.3), and it is obvious that
∣∣∂αg

(n)(x, α)
∣∣ ≤ C(1 + |x|)C similarly.

Moreover,

∣∣∂xg
(n)(x, α)

∣∣ ≤
∫

|∂x∂
k
θ Ψθ(y, x) · ϕn| dy +

∫
|∂k

θ Ψθ(y, x)||∂xϕn| dy
≤ O(ε−1

n )(1 + |x|)C

≤ O(
√
bn)(1 + |x|)C

by (3.3),(3.4) and (3.7).

Proposition 3.2 Assume Conditions A1 - A7, hn → 0 and nhn → ∞. Suppose that

a function g : R
d × Ξ → R and its derivatives ∂αg and ∂xg are of polynomial growth

uniformly in α. Then as n→ ∞,

sup
α∈Ξ

∣∣∣ 1

nhn

n∑
i=1

gi−1(α)X̄
(k)
i,n X̄

(l)
i,n1{|∆iXn|≤hρ

n} −
∫
g(x, α)β(k,l)(x) π(dx)

∣∣∣ P−→ 0

for k, l = 1, 2, . . . , d.
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Proof． We set

ζn
i (α) :=

1

nhn
gi−1(α)X̄

(k)
i,n X̄

(l)
i,n1{|∆iXn|≤hρ

n},

and show that

An :=
n∑

i=1

En
i−1 [ζn

i (α)]
P−→

∫
g(x, α)β(k,l)(x) dπ(x),

Bn :=

n∑
i=1

En
i−1

[
(ζn

i (α))2
] P−→ 0.

Using (3.22), we have

An =
1

nhn

n∑
i=1

gi−1(α)

2∑
j=0

En
i−1

[
X̄

(k)
i,n X̄

(l)
i,n1Cn

i,j

]

=
1

nhn

n∑
i=1

gi−1(α)

{
hne

−λ0hnβ
(k,l)
i−1 +R(α, h2

n, Xtni−1
)

+
2∑

j=1

En
i−1

[
X̄

(k)
i,n X̄

(l)
i,n1Cn

i,j

]}
.

Here, for sufficiently large n, we have∣∣∣X̄(k)
i,n X̄

(l)
i,n

∣∣∣ 1{|∆iXn|≤hρ
n} ≤ 2

{
(hρ

n)2 + |āi−1hn|2
}

= R(α, h2ρ
n , Xtni−1

).

Hence∣∣∣∣∣
2∑

j=1

1

nhn

n∑
i=1

gi−1(α)En
i−1

[
X̄

(k)
i,n X̄

(l)
i,n1Cn

i,j

]∣∣∣∣∣ ≤
2∑

j=1

1

nhn

n∑
i=1

R(α, h2ρ
n , Xtni−1

)P n
i−1{Cn

i,j}

= Op(h
1+2ρ
n ).

Therefore, by Proposition 3.1 (i),

An =
1

nhn

n∑
i=1

gi−1(α)hne
−λ0hnβ

(k,l)
i−1 +Op(hn)

P−→
∫
g(x, α)β(k,l)(x) dπ(x).

The convergence of Bn can be proved similarly as for An．
The proof of the uniformity of convergence is the same as for Proposition 3.1 (i),

that is, we set

sn(α) =
1

nhn

n∑
i=1

gi−1(α)X̄
(k)
i,n X̄

(l)
i,n1{|∆iXn|≤hρ

n},
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and using (3.24)，

sup
n
E

[
sup

α
|∂αsn(α)|

]
≤ 1

nhn

n∑
i=1

E
[
C(1 + |Xtni−1

|)C
∣∣∣X̄(k)

i,n X̄
(l)
i,n

∣∣∣1{|∆iXn|≤hρ
n}
]

≤ C

nhn

n∑
i=1

√√√√ 2∑
j=0

E

[∣∣∣X̄(k)
i,n X̄

(l)
i,n

∣∣∣2 1Cn
i,j

]

≤ C

nhn

n∑
i=1

E[R(α, hn, Xtni−1
)] <∞.

This completes the proof. �

Proposition 3.3 Under the same assumptions as in Proposition 3.2,

sup
α∈Ξ

∣∣∣∣∣ 1

nhn

n∑
i=1

gi−1(α)X̄
(k)
i,n 1{|∆iXn|≤hρ

n}

∣∣∣∣∣ P−→ 0

for k = 1, 2, . . . , d as n→ ∞.

Proof． We prove the convergence for each α in a similar way as for Proposition 3.2.

Let

ζn
i (α) =

1

nhn
gi−1(α)X̄

(k)
i,n 1{|∆iXn|≤hρ

n}.

It suffices to show that

An :=
n∑

i=1

En
i−1 [ζn

i (α)]
P−→ 0, Bn :=

n∑
i=1

En
i−1

[
(ζn

i (α))2
] P−→ 0.

Using (3.21), we have

An =
1

nhn

n∑
i=1

gi−1(α)

2∑
j=0

En
i−1

[
X̄

(k)
i,n 1Cn

i,j

]

=
1

nhn

n∑
i=1

gi−1(α)

{
R(α, h2

n, Xtni−1
) +

2∑
j=1

En
i−1

[
X̄

(k)
i,n 1Cn

i,j

]}
.

Here, for sufficiently large n, we have∣∣∣X̄(k)
i,n

∣∣∣1{|∆iXn|≤hρ
n} ≤ hρ

n + |āi−1hn| = R(α, hρ
n, Xtni−1

).

Hence∣∣∣∣∣
2∑

j=1

1

nhn

n∑
i=1

gi−1(α)En
i−1

[
X̄

(k)
i,n 1Cn

i,j

]∣∣∣∣∣ ≤
2∑

j=1

1

nhn

n∑
i=1

R(α, hρ
n, Xtni−1

)P n
i−1{Cn

i,j}
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= Op(h
1+ρ
n ).

Therefore An = Op(hn). The convergence of Bn can be proved similarly as for An．
Next, we show the tightness of

sn(α) :=
n∑

i=1

ζn
i (α)

=

n∑
i=1

ζ̄n
i (α) +

1

nhn

n∑
i=1

gi−1(α)X̄
(k)
i,n 1{|∆iXn|>hρ

n},

where ζ̄n
i (α) = 1

nhn
gi−1(α)X̄

(k)
i,n . The tightness of the second term in the last right-hand

side is shown by the same argument as in the proof of Proposition 3.4 below. Therefore

we only show the tightness of the first term
∑n

i=1 ζ̄
n
i (α).

According to Theorem B.8 in Appendix B, we should verify the following criterion:

for any N ∈ N and some positive constant H independent of n,

E

⎡
⎣( n∑

i=1

ζ̄n
i (α)

)2N
⎤
⎦ ≤ H, (3.26)

E

⎡
⎣
(

n∑
i=1

ζ̄n
i (α1) −

n∑
i=1

ζ̄n
i (α2)

)2N
⎤
⎦ ≤ H|α1 − α2|2N . (3.27)

Let G(s, α) =

n∑
i=1

gi−1(α)1[tni−1,tni )(s), we have

n∑
i=1

ζ̄n
i (α) =

1

nhn

{∫ nhn

0

G(s, α)ā(k)(Xs) ds+
r∑

j=1

∫ nhn

0

G(s, α)b(k,j)(Xs) dW
(j)
s

+

∫ nhn

0

∫
G(s, α)c(k)(Xs−, z) (p− q)(ds, dz) −

n∑
i=1

gi−1(α)ā
(k)
i−1hn

}
.

Therefore, the left-hand side of (3.26) is evaluated as follows:

E

⎡
⎣( n∑

i=1

ζ̄n
i (α)

)2N
⎤
⎦

≤ CN

{
E

[(
1

nhn

∫ nhn

0

G(s, α)ā(k)(Xs) ds

)2N
]



56 CHAPTER 3. PARAMETRIC ESTIMATION IN FINITE ACTIVITY MODELS

+

r∑
j=1

E

[(
1

nhn

∫ nhn

0

G(s, α)b(k,j)(Xs) dW
(j)
s

)2N
]

+ E

[(
1

nhn

∫ nhn

0

∫
G(s, α)c(k)(Xs−, z) (p− q)(ds, dz)

)2N
]

+ E

⎡
⎣
(

1

n

n∑
i=1

gi−1(α)ā
(k)
i−1

)2N
⎤
⎦
}
.

Applying Jensen’s and Burkholder-Davis-Gundy’s inequality, we see that

E

⎡
⎣
(

n∑
i=1

ζ̄n
i (α)

)2N
⎤
⎦ ≤ CN

{
1

nhn

∫ nhn

0

E
[
G2N(s, α)(ā(k)(Xs))

2N
]
ds

+
1

(nhn)N+1

r∑
j=1

∫ nhn

0

E
[
G2N (s, α)(b(k,j)(Xs))

2N
]
ds

+
1

(nhn)N+1

∫ nhn

0

∫
E
[
G2N(s, α)(c(k)(Xs−, z))2N

]
q(ds, dz)

+E

⎡
⎣
(

1

n

n∑
i=1

gi−1(α)ā
(k)
i−1

)2N
⎤
⎦
}
.

One can see that these all are bounded because of Assumption A3．On (3.27), by using

Jensen’s inequality and Burkholder-Davis-Gundy’s inequality, we have that

E

⎡
⎣( 1

|α1 − α2|
n∑

i=1

{
ζ̄n
i (α1) − ζ̄n

i (α2)
})2N

⎤
⎦

≤ CN

{
1

nhn

∫ nhn

0

E

[{
G(s, α1) −G(s, α2)

|α1 − α2|
}2N

(ā(k)(Xs))
2N

]
ds

+
1

(nhn)N+1

r∑
j=1

∫ nhn

0

E

[{
G(s, α1) −G(s, α2)

|α1 − α2|
}2N

(b(k,j)(Xs))
2N

]
ds

+
1

(nhn)N+1

∫ nhn

0

∫
E

[{
G(s, α1) −G(s, α2)

|α1 − α2|
}2N

(c(k)(Xs−, z))2N

]
q(ds, dz)

+
1

n

n∑
i=1

E

[{
gi−1(α1) − gi−1(α2)

|α1 − α2|
}2N

{ā(k)
i−1}2N

]}
. (3.28)

Since ∂αg is of polynomial growth uniformly in α, we have

|G(s, α1) −G(s, α2)|
|α1 − α2| ≤

n∑
i=1

sup
α

|∂αgi−1(α)|1[tni−1,tni )(s)
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≤
n∑

i=1

C(1 + |Xtni−1
|)C1[tni−1,tni )(s),

and

|gi−1(α1) − gi−1(α2)|
|α1 − α2| ≤ sup

α
|∂αgi−1(α)| ≤ C(1 + |Xtni−1

|)C.

Hence we see that (3.28) is bounded, and this completes the proof. �

Proposition 3.4 Assume Conditions A1 - A3, A5 - A7, hn → 0 and nhn → ∞.

Suppose gn(α, y, x) : Ξ × R
d × R

d → R satisfies that, for y1, y2 ∈ R
d and η ∈ [0, 1],

|∂αgn(α, y1, x) − ∂αgn(α, y2, x)| ≤ g̃n(α, ηy1 + (1 − η)y2, x)|y1 − y2|, (3.29)

where g̃n(α, y, x) ≤ O(
√
bn)(1 + |y|)C(1 + |x|)C, and

|∂m
α gn(α, y, x)| ≤ O(

√
bn)(1 + |y|)C(1 + |x|)C (m = 0, 1). (3.30)

Assume that the integral Gn(α, x) =
∫
gn(α, y, x)Ψ(y, x) dy exists for all x and α, and

that, for a π-integrable function L(x, α),

|Gn(α, x)|4 ≤ L(x, α), (3.31)

|∂xGn(α, x)| ≤ O(
√
bn)(1 + |x|)C . (3.32)

Moreover there exists a function g such that

Gn(α, x) −→
∫
g(α, y, x)Ψ(y, x) dy π-a.s. (3.33)

and the last integral is a π-integrable function for all α. Furthermore, assume that∫
sup

α
|∂αgn(α, y, x)|Ψ(y, x) dy ≤ C(1 + |x|)C (3.34)

for all x. Then it follows as n→ ∞ that

sup
α∈Ξ

∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆iX
n, Xtni−1

)1{|∆iXn|>hρ
n} −

∫∫
g(α, y, x)Ψ(y, x) dy dπ(x)

∣∣∣∣∣ P→ 0.

Proof． First, we show the convergence for each α.

Applying Hölder’s inequality, for p > 1, δ ∈ (0, 1/3] which satisfies 1
p

+ 1
1+δ

= 1 and

ε > 0,

∑
j=0,2

P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆iX
n, Xtni−1

)1Dn
i,j

∣∣∣∣∣ > ε

}
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≤
∑
j=0,2

1

εnhn

n∑
i=1

E
[∣∣∣gn(α,∆iX

n, Xtni−1
)1Dn

i,j

∣∣∣]

≤
∑
j=0,2

1

εnhn

n∑
i=1

(
E
∣∣∣gn(α,∆iX

n, Xtni−1
)
∣∣∣p)1/p (

P{Dn
i,j}

) 1
1+δ

= O

(
h

1−δ
1+δ
n

√
bn

)

= O

(√
hnbn · h

1−3δ
2+2δ
n

)
= o(1).

From this, we have the following inequality:

P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆iX
n, Xtni−1

)1{|∆iXn|>hρ
n} −

∫∫
gn(α, y, x)Ψ(y, x) dy dπ

∣∣∣∣∣ > 3ε

}

= P

{∣∣∣∣∣ 1

nhn

n∑
i=1

2∑
j=0

gn(α,∆iX
n, Xtni−1

)1Dn
i,j

−
∫∫

gn(α, y, x)Ψ(y, x) dy dπ

∣∣∣∣∣ > 3ε

}

≤ P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆iX
n, Xtni−1

)1Dn
i,1

−
∫∫

gn(α, y, x)Ψ(y, x) dy dπ

∣∣∣∣∣ > ε

}

+
∑
j=0,2

P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆iX
n, Xtni−1

)1Dn
i,j

∣∣∣∣∣ > ε

}

≤
5∑

k=1

Ik + o(1),

where

I1 = P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆iX
n, Xtni−1

)1Dn
i,1

− 1

nhn

n∑
i=1

gn(α,∆Xτn
i
, Xtni−1

)1Dn
i,1

∣∣∣∣∣ > ε

5

}
,

I2 = P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆Xτn
i
, Xtni−1

)1Dn
i,1

− 1

nhn

n∑
i=1

gn(α,∆Xτn
i
, Xtni−1

)1{Jn
i =1}

∣∣∣∣∣ > ε

5

}
,

I3 = P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆Xτn
i
, Xtni−1

)1{Jn
i =1}

− 1

nhn

n∑
i=1

∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) p(ds, dz)

∣∣∣∣∣ > ε

5

}
,
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I4 = P

{∣∣∣∣∣ 1

nhn

n∑
i=1

∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) p(ds, dz)

− 1

nhn

n∑
i=1

∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) q(ds, dz)

∣∣∣∣∣ > ε

5

}
,

I5 = P

{∣∣∣∣∣ 1

nhn

n∑
i=1

∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) q(ds, dz)

−
∫∫

g(α, y, x)Ψ(y, x) dy dπ

∣∣∣∣∣ > ε

5

}
.

Let us evaluate these terms. Applying Hölder’s inequality, for p > 1 and q > 1 with

1/p+ 1/q = 1, we see

I1 ≤ 5

εnhn

n∑
i=1

E
[
|gn(α,∆iX

n, Xtni−1
) − gn(α,∆Xτn

i
, Xtni−1

)|1Dn
i,1

]

≤ 5

εnhn

n∑
i=1

E
[∣∣∣g̃n(α, ξn

i , Xtni−1
)
∣∣∣ (|Xtni

−Xτn
i
| + |Xτn

i − −Xtni−1
|
)

1{Jn
i =1}

]

≤ 5

εnhn

n∑
i=1

E

[(
E

[∣∣∣g̃n(α, ξn
i , Xtni−1

)
∣∣∣2 ∣∣∣Jn

i = 1

])1/2

(
E

[(
|Xtni

−Xτn
i
| + |Xτn

i − −Xtni−1
|
)2 ∣∣∣Jn

i = 1

])1/2

1{Jn
i =1}

]
,

where ξn
i = η∆iX

n + (1 − η)∆Xτn
i

for some [0, 1]-valued random variable η. Here, we

notice that X follows the following stochastic differential equation on the set {Jn
i = 1};

X̃t − X̃tni−1
= Ht +

∫ t

tni−1

ā(X̃s) ds+

∫ t

tni−1

b(X̃s) dws,

where X̃tni−1
= Xtni−1

, Ht = c(Xu−, z)1[u,tni ](t), u is a [tni−1, t
n
i ]-valued uniform random

variable which is independent of (wt)t≥0 and Jn
i , and z is a random variable with density

Fθ0 which is independent of (wt)t≥0. Therefore, for example,

E

[∣∣∣Xτn
i − −Xtni−1

∣∣∣2 ∣∣∣Jn
i = 1

]
= E

[∣∣∣Xτn
i − −Xtni−1

∣∣∣2 1{Jn
i =1}

]/
P{Jn

i = 1}

= E

[∣∣∣X̃u− − X̃tni−1

∣∣∣2] .
Applying the Burkholder-Davis-Gundy’s inequality to (3.13)，we see that

E

[
sup

t∈[tni−1,τn
i −]

|X̃t − X̃tni−1
|2
]
≤ C

{
h2

n + E

[∫ tni

tni−1

b2(X̃s) ds

]}
= O(hn).
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Hence E

[∣∣∣Xτn
i − −Xtni−1

∣∣∣2 ∣∣∣Jn
i = 1

]
= O(hn). Similarly, by (3.14),

E

[
sup

t∈[τn
i ,tni ]

|X̃tni
− X̃t|2

]
= O(hn),

and E
[∣∣Xtni

−Xτn
i

∣∣2 ∣∣∣Jn
i = 1

]
= O(hn). Hence I1 = O

(√
hnbn

)
．

I2 = P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆Xτn
i
, Xtni−1

)1Cn
i,1

∣∣∣∣∣ > ε

5

}

≤ 5

εnhn

n∑
i=1

E
[∣∣∣gn(α,∆Xτn

i
, Xtni−1

)1Cn
i,1

∣∣∣]

≤ C

nhn

n∑
i=1

O(
√
bn)

√
P{Cn

i,1} = O
(√

hnbn

)
.

I3 ≤ P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α,∆Xτn
i
, Xtni−1

)1{Jn
i =1}

− 1

nhn

n∑
i=1

gn(α, ci−1(∆zτn
i
), Xtni−1

)1{Jn
i =1}

∣∣∣∣∣ > ε

10

}

+ P

{∣∣∣∣∣ 1

nhn

n∑
i=1

gn(α, ci−1(∆zτn
i
), Xtni−1

)1{Jn
i =1}

− 1

nhn

n∑
i=1

∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) p(ds, dz)

∣∣∣∣∣ > ε

10

}
.

The first term of the right-hand side becomes O(
√
hnbn) by the same argument as I1.

Denote the second term by I ′3 then

I ′3 ≤ 10

εnhn

n∑
i=1

E

[∣∣∣∣∣gn(α, ci−1(∆zτn
i
), Xtni−1

)1{Jn
i =1}

−
∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) p(ds, dz)

∣∣∣∣∣
]

=
10

nhn

n∑
i=1

E

[∣∣∣∣∣
∫ tni

tni−1

∫
1{Jn

i ≥2}gn(α, ci−1(z), Xtni−1
) p(ds, dz)

∣∣∣∣∣
]

≤ 10

nhn

n∑
i=1

(P{Jn
i ≥ 2})1/2

∥∥∥∥∥
∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) p(ds, dz)

∥∥∥∥∥
L2(P )
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≤ C

n

n∑
i=1

{
E

[∫ tni

tni−1

∫
g2

n(α, ci−1(z), Xtni−1
) q(ds, dz)

]}1/2

= O(
√
hnbn).

Hence I3 = O(
√
hnbn). Furthermore

I4 ≤ 25

ε2
E

⎡
⎣
(

1

nhn

n∑
i=1

∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) (p− q)(ds, dz)

)2
⎤
⎦

≤ 25

ε2n2h2
n

n∑
i=1

E

[∫ tni

tni−1

∫
g2

n(α, ci−1(z), Xtni−1
)q(ds, dz)

]

+
50

ε2n2h2
n

∑
i<j

E

[∫ tni

tni−1

∫
gn(α, ci−1(z), Xtni−1

) (p− q)(ds, dz)

× E

[∫ tnj

tnj−1

∫
gn(α, cj−1(z), Xtnj−1

) (p− q)(ds, dz)
∣∣∣F n

j−1

]]
= O

(
bn
nhn

)
.

The term I5 clearly converges to zero by Proposition 3.1 (i); see Remark 3.9.

Let us show the uniformity of convergence. Set

sn(α) =
1

nhn

n∑
i=1

gn(α,∆iX
n, Xtni−1

)1{|∆iXn|>hρ
n}.

We prove the tightness of {sn(α)}. The expectation

E

[
sup

α
|∂αsn(α)|

]
≤ 1

nhn

n∑
i=1

2∑
j=0

E

[
sup

α
|∂αgn(α,∆iX

n, Xtni−1
)|1Dn

i,j

]

≤ 1

nhn

n∑
i=1

E

[
sup

α
|∂αgn(α,∆iX

n, Xtni−1
)|1Dn

i,1

]
+ o

(√
hnbn

)

by condition (3.30) and Hölder ’s inequality, and we can show that

1

nhn

n∑
i=1

E

[
sup

α
|∂αgn(α,∆iX

n, Xtni−1
)|1Dn

i,1

]

=

∫∫
sup

α
|∂αgn(α, y, x)|Ψ(y, x) dy dπ +O

(√
hnbn

)
.

Indeed, by the same argument as above,∣∣∣∣∣E
[

1

nhn

n∑
i=1

sup
α

|∂αgn(α,∆iX
n, Xtni−1

)|1Dn
i,1
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−
∫∫

sup
α

|∂αgn(α, y, x)|Ψ(y, x) dy dπ

]∣∣∣∣∣ ≤
5∑

k=1

Hk,

where

H1 =

∣∣∣∣∣E
[

1

nhn

n∑
i=1

sup
α

|∂αgn(α,∆iX
n, Xtni−1

)|1Dn
i,1

− 1

nhn

n∑
i=1

sup
α

|∂αgn(α,∆Xτn
i
, Xtni−1

)|1Dn
i,1

]∣∣∣∣∣,
H2 =

∣∣∣∣∣E
[

1

nhn

n∑
i=1

sup
α

|∂αgn(α,∆Xτn
i
, Xtni−1

)|1Dn
i,1

− 1

nhn

n∑
i=1

sup
α

|∂αgn(α,∆Xτn
i
, Xtni−1

)|1{Jn
i =1}

]∣∣∣∣∣,
H3 =

∣∣∣∣∣E
[

1

nhn

n∑
i=1

sup
α

|∂αgn(α,∆Xτn
i
, Xtni−1

)|1{Jn
i =1}

− 1

nhn

n∑
i=1

∫ tni

tni−1

∫
sup

α
|∂αgn(α, ci−1(z), Xtni−1

)| p(ds, dz)
]∣∣∣∣∣,

H4 =

∣∣∣∣∣E
[

1

nhn

n∑
i=1

∫ tni

tni−1

∫
sup

α
|∂αgn(α, ci−1(z), Xtni−1

)| p(ds, dz)

− 1

nhn

n∑
i=1

∫ tni

tni−1

∫
sup

α
|∂αgn(α, ci−1(z), Xtni−1

)| q(ds, dz)
]∣∣∣∣∣,

H5 =

∣∣∣∣∣E
[

1

nhn

n∑
i=1

∫ tni

tni−1

∫
sup

α
|∂αgn(α, ci−1(z), Xtni−1

)| q(ds, dz)

−
∫∫

sup
α

|∂αgn(α, y, x)|Ψ(y, x) dy dπ

]∣∣∣∣∣.
We obtain that H1 = O

(√
hnbn

)
by the same argument as for I1 since

∣∣∣∣sup
α

|∂αgn(α, y1, x)| − sup
α

|∂αgn(α, y2, x)|
∣∣∣∣ ≤ sup

α
|∂αgn(α, y1, x) − ∂αgn(α, y2, x)|

≤ g̃n(α, ηy1 + (1 − η)y2, x)|y1 − y2|.

Similarly, we can obtain that H2 + H3 = O
(√

hnbn
)
. Moreover it is also easy to see

that H4 = H5 = 0. Hence, sup
n
E

[
sup

α
|∂αsn(α)|

]
<∞. This ends the proof. �
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Remark 3.8 Condition (3.29) is satisfied if ∂αgn(α, y, x) is differentiable with respect

to y and

|∂y∂αgn(α, y, x)| ≤ O(
√
bn)(1 + |y|)C(1 + |x|)C. (3.35)

Remark 3.9 Thanks to Conditions (3.29) - (3.34), we are able to apply Proposition

3.1 (i) to Gn(α, x).

Remark 3.10 Below, we use this proposition as

gn(α, y, x) = ∂k
θ log Φn(θ, x, y) · ϕn(x, y) (k = 0, 1, 2).

We are able to check the above conditions for this gn by A9. Indeed,

|∂ygn(α, y, x)| ≤ |∂y∂
k
θ log Φn||ϕn| + |∂yϕn||∂k

θ log Φn|
≤ O(ε−2

n )(1 + |y|)C(1 + |x|)C +O(ε−3
n )(1 + |y|)C(1 + |x|)C

≤ O(
√
bn)(1 + |y|)C(1 + |x|)C

from (3.3),(3.5),(3.7) and (3.8). Similarly,

|∂y∂αgn(α, y, x)| =
∣∣∂y

[
∂k+1

θ log Ψθ(y, x) · ϕn(x, y)
]∣∣

≤ O(ε−4
n )(1 + |y|)C(1 + |x|)C

≤ O(
√
bn)(1 + |y|)C(1 + |x|)C .

Therefore (3.35) is satisfied, and this implies (3.29).

On the inequality (3.30),

|∂m
α gn(α, y, x)| =

∣∣∂k+m
θ log Ψθ(y, x) · ϕn(x, y)

∣∣
≤ O(ε−2−m

n )(1 + |y|)C(1 + |x|)C

≤ O(
√
bn)(1 + |y|)C(1 + |x|)C .

On the inequality (3.31),

|gn(α, y, x)Ψ(y, x)| ≤ {|∂k
θ log Ψθ(y, x)| + 1}Ψ(y, x), (3.36)

therefore (3.3) and (3.6) yield (3.31).

Next,

|∂xGn(α, x)| ≤
∫

|∂x(∂
k
θ log Φn · ϕn)Ψ| dy +

∫
|∂k

θ log Φn · ϕn||∂xΨ| dy

≤
∫

|∂xϕn∂
k
θ log Φn||Ψ| dy +

∫
|ϕn∂x∂

k
θ log Φn||Ψ| dy
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+

∫
|∂k

θ log Φn · ϕn||∂xΨ| dy.

The inequalities (3.3), (3.4), (3.7) and (3.8) imply that

|∂xϕn∂
k
θ log Φn| ≤ O(ε−3

n )L(y)(1 + |x|)C ,

|ϕn∂x∂
k
θ log Φn| ≤ O(ε−3

n )L(y)(1 + |x|)C ,

|∂k
θ log Φn · ϕn| ≤ O(ε−2

n )L(y)(1 + |x|)C ,

where L(y) is a bounded dy-integrable function. Then

|∂xGn(α, x)| ≤
∫
O(ε−3

n )L(y)(1 + |x|)CΨ dy +

∫
O(ε−2

n )L2(y)L(y)(1 + |x|)C dy

≤ O(
√
bn)(1 + |x|)C .

Therefore (3.32) is satisfied. The condition (3.33) is obtained from Lebesgue’s theorem

thanks to (3.36).

The inequality (3.34) is obtained from (3.6) directly with g(α, x, y) = ∂k
θ log Φθ(y, x).

3.5 Proof of the main theorem

We proceed the proof of Theorem 3.1.

3.5.1 Proof of consistency

Let us prove the consistency of α̂n.

Applying Propositions 3.1 (i), (ii), 3.2 and 3.4，we can easily obtain that

1

n
l̄n(α)

P→ U1(σ, σ0) = −1

2

∫ {
tr
(
β−1(x, σ)β(x, σ0)

)
+ log detβ(x, σ)

}
dπ, (3.37)

1

nhn

l̃n(θ)
P→ U2(θ, θ0) =

∫∫
{(log Ψθ(y, x))Ψθ0(y, x) − Ψθ(y, x)} dy dπ (3.38)

uniformly in σ and θ. See Remark 3.7 and Remark 3.10 on the conditions for the

convergence (3.38).

In order to prove the consistency of α̂n, we may assume that the convergences of

(3.37) and (3.38) take place almost surely and uniformly in the parameters, and prove

that it implies α̂n → α0 almost surely since the convergence in probability implies that,

for any subsequence, the existence of a subsequence converging almost surely.
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For fixed ω ∈ Ω, thanks to the compactness of Ξ, there exists a subsequence nk

such that α̂nk
→ α∞ = (θ∞, σ∞). Since the mapping σ → U1(σ, σ0) is continuous,

1

nk
lnk

(α̂nk
) −→ U1(σ∞, σ0),

and, by the definition of σ̂n, we have U1(σ∞, σ0) ≥ U1(σ0, σ0). On the other hand,

notice the following inequality:

log
detβ(x, σ0)

detβ(x, σ∞)
≤ tr

[
β−1(x, σ∞)β(x, σ0)

]− d,

then we have U1(σ∞, σ0) ≤ U1(σ0, σ0). Hence the equality U1(σ∞, σ0) = U1(σ0, σ0) and

Assumption A10 lead that σ∞ = σ0. This implies that any convergent subsequence of

σ̂n tends to σ0. This means the consistency of σ̂n.

Next, let us show the consistency of θ̂n. Since the mapping θ → U2(θ, θ0) is also

continuous,

1

nkhnk

˜lnk
(θ̂nk

) −→ U2(θ∞, θ0)

for fixed ω ∈ Ω. Here we prepare a lemma.

Lemma 3.7 Assume Conditions A1 - A11, hn → 0 and nhn → ∞. Then

1

nhn
l̄n(θ, σ) − 1

nhn
l̄n(θ0, σ)

P−→ −1

2

∫
(ā(x, θ0) − ā(x, θ))∗β−1(x, σ)(ā(x, θ0) − ā(x, θ)) dπ (3.39)

uniformly in α as n→ ∞.

Proof． By simple computation,

1

nhn
l̄n(θ, σ) − 1

nhn
l̄n(θ0, σ)

= − 1

2n

n∑
i=1

(āi−1(θ0) − āi−1(θ))
∗β−1

i−1(σ)(āi−1(θ0) − āi−1(θ))1{|∆iXn|≤hρ
n}

− 1

nhn

n∑
i=1

(āi−1(θ0) − āi−1(θ))
∗β−1

i−1(σ) (∆iX
n − āi−1(θ0)hn) 1{|∆iXn|≤hρ

n}.

Propositions 3.1 (ii) and 3.3 end the proof． �
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Thanks to this lemma and the continuity of the limit function (3.39),

1

nhn
ln(θ̂nk

, σ̂n) − 1

nhn
ln(θ0, σ̂n)

P−→ −1

2

∫
(ā(x, θ0) − ā(x, θ∞))∗β−1(x, σ0)(ā(x, θ0) − ā(x, θ∞)) dπ

− {U2(θ0, θ0) − U2(θ∞, θ0)}.
The above limit is positive because of the definition of θ̂n. Therefore θ∞ satisfies

Ψθ∞(x, z) = Ψθ0(x, z) and ā(x, θ0) = ā(x, θ∞) since β−1 is a positive definite and

U2(θ, θ0) will be maximized if and only if Ψθ(x, z) = Ψθ0(x, z). Thus the assumption

A10 implies θ∞ = θ0．This ends the proof of consistency. �

3.5.2 Proof of asymptotic normality

First, let us compute the first and the second derivatives of the contrast function. For

p, p′ = 1, 2, . . . , m1 and q, q′ = 1, 2, . . . , m2,

∂θp ln(α) =
n∑

i=1

{
δp
i,1(α) + δp

i,2(α)
}
,

δp
i,1(α) =

d∑
k,l=1

∂θp ā
(k)
i−1(θ)(β

−1
i−1)

(k,l)(σ)X̄
(l)
i,n(θ)1{|∆iXn|≤hρ

n},

δp
i,2(α) = ∂θp

{
log Φn(θ,Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n}

− hn

∫
∂θpΦn(θ,Xtni−1

, y) dy,

∂σq ln(α) =
n∑

i=1

ζq
i (α),

ζq
i (α) = −1

2

{
d∑

k,l=1

∂σq (β
−1
i−1)

(k,l)(σ)

hn

X̄
(k)
i,n (θ)X̄

(l)
i,n(θ)

+
∂σq detβi−1(σ)

detβi−1(σ)

}
1{|∆iXn|≤hρ

n},

∂2
θpθp′

ln(α) =

n∑
i=1

d∑
k,l=1

{
∂2

θpθp′
ā

(k)
i−1(θ)(β

−1
i−1)

(k,l)(σ)X̄
(l)
i,n(θ)

− (∂θp ā
(k)
i−1(θ))(∂θp′ ā

(l)
i−1(θ))(β

−1
i−1)

(k,l)(σ)hn

}
1{|∆iXn|≤hρ

n}

+

n∑
i=1

{
∂2

θpθp′

{
log Φn(θ,Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n}
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− hn

∫
∂2

θpθp′Φn(θ,Xtni−1
, y) dy

}
,

∂2
σqσq′

ln(α) = −
n∑

i=1

{
d∑

k,l=1

∂2
σqσq′ (β

−1
i−1)

(k,l)(σ)

2hn
X̄

(k)
i,n (θ)X̄

(l)
i,n(θ)

+
1

2
∂2

σqσq′
log detβi−1(σ)

}
1{|∆iXn|≤hρ

n},

∂2
θpσq

ln(α) = ∂2
σqθp

ln(α)

= −
n∑

i=1

d∑
k,l=1

∂θp ā
(k)
i−1(θ)∂σq(β

−1
i−1)

(k,l)(σ)X̄
(l)
i,n(θ)1{|∆iXn|≤hρ

n}.

We define the following notations:

Mn :=

⎛
⎜⎝

1√
nhn

Im1 0

0
1√
n
Im2

⎞
⎟⎠ ,

where In is an n-dimensional identity matrix. Let

Sn :=

( √
nhn(θ̂n − θ0)√
n(σ̂n − σ0)

)
, Ln(α) :=

⎛
⎜⎝ − 1√

nhn

∂θln(α)

− 1√
n
∂σln(α)

⎞
⎟⎠ ,

and

Cn(α) :=

⎛
⎜⎝

1

nhn
∂2

θ ln(α)
1

n
√
hn

∂2
θσln(α)

1

n
√
hn

∂2
σθln(α)

1

n
∂2

σln(α)

⎞
⎟⎠ .

Then

Mn∂
2
αln =

⎛
⎜⎝

1√
nhn

∂2
θ ln(α)

1√
nhn

∂2
θσln(α)

1√
n
∂2

σθln(α)
1√
n
∂2

σln(α)

⎞
⎟⎠ = Cn(α)M−1

n .

Now, by Taylor’s formula,∫ 1

0

∂2
αln(α0 + u(α̂n − α0)) du

(
θ̂n − θ0

σ̂n − σ0

)
= −∂αln(α0) (3.40)

since ∂ln(α̂n) = 0. Then, multiplying both sides by Mn from the left, we have∫ 1

0

Cn(α0 + u(α̂n − α0)) du Sn = Ln(α0). (3.41)

Thus the asymptotic normality of Sn is proved by Lemmas 3.8 and 3.9 below.
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Lemma 3.8 Assume Conditions A1 - A11, hn → 0 and nhn → ∞. Then the following

statements hold:

(i) Cn(α0)
P−→ B, where B = −K and K is given in Theorem 3.1.

(ii) For any positive sequence εn tending to zero,

sup
|α|≤εn

|Cn(α + α0) − Cn(α0)| P−→ 0 (n→ ∞).

Proof． (i) We show the convergence of n−1∂2
σln(α0) only. The others are easily

shown by using Propositions 3.1 (i), (ii), 3.2, 3.3 and 3.4.

Applying Propositions 3.1 (ii) and 3.2, we have

1

n
∂2

σqσq′ ln(α0)
P−→ −1

2

∫
tr
[
∂2

σqσq′β
−1(x)β(x)

]
dπ − 1

2

∫
∂σq∂σq′ log detβ(x) dπ.

Noticing that ∂σq log detβ(x, σ) = −tr
[
∂σqβ

−1(x)β(x)
]
, so also

∂2
σqσq′

log detβ(x) = −tr
[
∂2

σqσq′
β−1(x)β(x)

]
− tr

[
∂σqβ

−1(x)∂σq′β(x)
]
,

we can obtain that

1

n
∂2

σqσq′
ln(α0)

P−→ 1

2

∫
tr
[
∂σqβ

−1(x)∂σq′β(x)
]
dπ

= −1

2

∫
tr
[
(∂σqβ)β−1(∂σq′β)β−1

]
(x) dπ.

(ii) Let B(α) be the uniform limit of Cn(α), that is,

sup
α∈H

|Cn(α) − B(α)| P−→ 0,

and B(α) is easily specified. Then, noticing B(α0) = B, we have

sup
|α|≤εn

|Cn(α+ α0) − Cn(α0)|

≤ 2 sup
|α|≤εn

|Cn(α + α0) − B(α + α0)| + sup
|α|≤εn

|B(α + α0) − B| .

The first term on the right-hand side converges to zero in probability by the

uniformity of convergence, The second term also converges to zero in probability by

the continuity of B(α). �

Lemma 3.9 Assume Conditions A1 - A11, hn → 0 and nhn → ∞, in addition,

assume nh2
n → 0. Then, as n→ ∞,

Ln(α0)
d−→ L ∼ Nm(0, K).
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Actually, by (3.41),(∫ 1

0

{Cn(α0 + u(α̂n − α0)) − Cn(α0)} du+ Cn(α0)

)
Sn = Ln(α0).

We find that the matrix∫ 1

0

{Cn(α0 + u(α̂n − α0)) − Cn(α0)} du+ Cn(α0) (3.42)

converges in probability to the nonsingular matrix B. Hence, taking the limit on both

sides after multiplying by the inverse of (3.42), we see by the continuous mapping

theorem that

Sn
d−→ B−1L ∼ Nm(0, K−1).

This ends the proof of the asymptotic normality of Sn． �

Finally it remains to show Lemma 3.9.

Proof． Notice that the sequence Ln(α0) is a triangular array. Therefore we can

apply Theorem A.3 and its Remark A.1 in order to show the asymptotic normality

of Ln(α0). According to Remark 3.11 below, it suffices to show the following: For

p, p′ = 1, . . . , m1, q, q
′ = 1, . . . , m2 and some ν1, ν2 > 0,

n∑
i=1

∣∣∣∣En
i−1

[
1√
nhn

δp
i,v(α0)

]∣∣∣∣ P−→ 0 (v = 1, 2), (3.43)

n∑
i=1

∣∣∣∣En
i−1

[
1√
n
ζi(α0)

q

]∣∣∣∣ P−→ 0, (3.44)

n∑
i=1

En
i−1

[
1

nhn
δp
i,1(α0)δ

p′
i,1(α0)

]
P−→

∫
(∂θp ā)

∗β−1(∂θp′ ā(x, α0)) dπ, (3.45)

n∑
i=1

En
i−1

[
1

nhn

δp
i,2(α0)δ

p′
i,2(α0)

]
P−→

∫∫
∂θpΨθ0∂θp′Ψθ0

Ψθ0

(y, x) dy dπ, (3.46)

n∑
i=1

En
i−1

[
1

nhn
δp
i,1(α0)δ

p′
i,2(α0)

]
P−→ 0, (3.47)
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n∑
i=1

En
i−1

[
1

n
ζq
i (α0)ζ

q′
i (α0)

]
P−→ 1

2

∫
tr[(∂σqβ)β−1(∂σq′β)β−1](x, σ0) dπ, (3.48)

n∑
i=1

En
i−1

[
1

n
√
hn

δp
i,v(α0)ζ

q
i (α0)

]
P−→ 0 (v = 1, 2), (3.49)

n∑
i=1

En
i−1

[∣∣∣∣ 1√
nhn

δp
i,v(α0)

∣∣∣∣
2+ν1

]
P−→ 0 (v = 1, 2), (3.50)

n∑
i=1

En
i−1

[∣∣∣∣ 1√
n
ζq
i (α0)

∣∣∣∣
2+ν2

]
P−→ 0. (3.51)

Remark 3.11 We use the central limit theorem for triangular arrays to show this

lemma, so we have to check the Lindeberg condition for Ln(α0) =
n∑

i=1

Xn
i , that is,

n∑
i=1

En
i−1

[|Xn
i |21{|Xn

i |>ε}
] P−→ 0

for any ε > 0. If Xn
i has an expression Xn

i = Y n
i + Zn

i then

n∑
i=1

En
i−1

[|Xn
i |21{|Xn

i |>ε}
]

≤ 4
n∑

i=1

En
i−1

[|Y n
i |21{|Y n

i |>ε/2}
]
+ 4

n∑
i=1

En
i−1

[|Zn
i |21{|Zn

i |>ε/2}
]
.

Hence, to check the above Lindeberg condition, it suffices to check the following Lyap-

nov conditions:

n∑
i=1

En
i−1

[|Y n
i |2+ν1

]
,

n∑
i=1

En
i−1

[|Zn
i |2+ν2

] P−→ 0

for some ν1, ν2 > 0. Here, it is not necessary that ν1 and ν2 are the same, so the above

νi’s of (3.50) and (3.51) can be taken differently.

Proof of (3.43)
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For v = 1, it follows that

n∑
i=1

∣∣∣∣En
i−1

[
1√
nhn

δp
i,1(α0)

]∣∣∣∣
=

1√
nhn

n∑
i=1

∣∣∣∣∣
d∑

k,l=1

∂θp ā
(k)
i−1(β

−1
i−1)

(k,l)
2∑

j=0

En
i−1

[
X̄

(l)
i,n1Cn

i,j

]∣∣∣∣∣ .
Since |X̄(l)

i,n|1{|∆iXn|≤hρ
n} = R(α, hρ

n, Xtni−1
), we see that

1√
nhn

n∑
i=1

∣∣∣∣∣
d∑

k,l=1

∂θp ā
(k)
i−1(β

−1
i−1)

(k,l)
2∑

j=1

En
i−1

[
X̄

(l)
i,n1Cn

i,j

]∣∣∣∣∣
≤ 1√

nhn

n∑
i=1

R(α, hρ
n, Xtni−1

)
2∑

j=1

P n
i−1{Cn

i,j}

≤ 1

n

n∑
i=1

R
(
α,
√
nh3+2ρ

n , Xtni−1

)
.

Applying (3.21) to the term for j = 0, we have

n∑
i=1

∣∣∣∣En
i−1

[
1√
nhn

δp
i,1(α0)

]∣∣∣∣
=

1√
nhn

n∑
i=1

∣∣∣∣∣
d∑

k,l=1

∂θp ā
(k)
i−1(β

−1
i−1)

(k,l)

∣∣∣∣∣R(α, h2
n, Xtni−1

) + op(
√
nh3

n)

=
1

n

n∑
i=1

R(α,
√
nh3

n, Xtni−1
) + op(

√
nh3

n)
P−→ 0.

For v = 2, it follows that

n∑
i=1

∣∣∣∣En
i−1

[
1√
nhn

δp
i,2(α0)

]∣∣∣∣
=

1√
nhn

n∑
i=1

∣∣∣En
i−1

[ 2∑
j=0

∂θp

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1Dn

i,j

− hn

∫
∂θpΦn(Xtni−1

, y) dy
]∣∣∣

=
1√
nhn

n∑
i=1

∣∣∣En
i−1

[
∂θp

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1Dn

i,1

− hn

∫
∂θpΦn(Xtni−1

, y) dy
]∣∣∣ + op

(√
nh2

nbn

)
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≤ 1√
nhn

n∑
i=1

5∑
k=1

I i
k + op

(√
nh2

nbn

)
,

where

I i
1 =

∣∣∣∣∣En
i−1

[
∂θp

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1Dn

i,1

− ∂θp

{
log Φn(θ0, Xtni−1

,∆Xτn
i
)
}
ϕn(Xtni−1

,∆Xτn
i
)1Dn

i,1

]∣∣∣∣∣,
I i
2 =

∣∣∣∣∣En
i−1

[
∂θp

{
log Φn(Xtni−1

,∆Xτn
i
)
}
ϕn(Xtni−1

,∆Xτn
i
)1Dn

i,1

− ∂θp

{
log Φn(θ0, Xtni−1

,∆Xτn
i
)
}
ϕn(Xtni−1

,∆Xτn
i
)1{Jn

i =1}

]∣∣∣∣∣,
I i
3 =

∣∣∣∣∣En
i−1

[
∂θp

{
log Φn(Xtni−1

,∆Xτn
i
)
}
ϕn(Xtni−1

,∆Xτn
i
)1{Jn

i =1}

−
∫ tni

tni−1

∫
∂θp

{
log Φn(Xtni−1

, ci−1(z))
}
ϕn(Xtni−1

, ci−1(z)) p(ds, dz)

]∣∣∣∣∣,
I i
4 =

∣∣∣∣∣En
i−1

[∫ tni

tni−1

∫
∂θp

{
log Φn(Xtni−1

, ci−1(z))
}
ϕn(Xtni−1

, ci−1(z)) p(ds, dz)

−
∫ tni

tni−1

∫
∂θp

{
log Φn(Xtni−1

, ci−1(z))
}
ϕn(Xtni−1

, ci−1(z)) q(ds, dz)

]∣∣∣∣∣,
I i
5 =

∣∣∣∣∣En
i−1

[∫ tni

tni−1

∫
∂θp

{
log Φn(Xtni−1

, ci−1(z))
}
ϕn(Xtni−1

, ci−1(z)) q(ds, dz)

− hn

∫
∂θpΦn(Xtni−1

, y) dy

]∣∣∣∣∣.
Since, by Remark 3.10,

|∂y∂θp log Φn(θ0, x, y)ϕn(x, y)| ≤ O(
√
bn)(1 + |y|)C(1 + |x|)C ,

we can apply the same argument to the terms I i
1 - I i

3 as for H1 - H3 in the proof of

Proposition 3.4，we easily obtain that

I i
1 = R

(
α,
√
h3

nbn, Xtni−1

)
, I i

2 = R(α,
√
h3

nbn, Xtni−1
), I i

3 = R
(
α,
√
h3

nbn, Xtni−1

)
.

It is also easy to see that I i
4 = I i

5 = 0. Thus

n∑
i=1

∣∣∣∣En
i−1

[
1√
nhn

δp
i,2(α0)

]∣∣∣∣ = Op

(√
nh2

nbn

)
.
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Proof of (3.44)

Using Lemma 3.6 (3.22), we have

n∑
i=1

∣∣∣∣En
i−1

[
1√
n
ζq
i (α0)

]∣∣∣∣ =
1√
n

n∑
i=1

∣∣∣∣∣
2∑

j=0

En
i−1

[
d∑

k,l=1

∂σq(β
−1
i−1)

(k,l)

2hn

X̄
(k)
i,n X̄

(l)
i,n1Cn

i,j

]

+
1

2

∂σq detβi−1

det βi−1

P n
i−1 {|∆iX

n| ≤ hρ
n}
∣∣∣∣∣

=
1√
n

n∑
i=1

∣∣∣∣∣12tr
[
∂σqβ

−1
i−1βi−1

]
e−λ0hn +R(α, hn, Xtni−1

)

+
1

2

∂σq detβi−1

det βi−1

(
e−λ0hn +R(α, h3

n, Xtni−1
) + λ2

0h
2
n

) ∣∣∣∣∣
= Op(

√
nh2

n).

We used the relation
∂σq detβi−1(σ)

detβi−1(σ)
= −tr

[
∂σqβ

−1
i−1(σ)βi−1(σ)

]
.

Proof of (3.45)

Noticing that |X̄(l)
i,n|1{|∆iXn|≤hρ

n} = R(α, hρ
n, Xtni−1

), we see from Lemma 3.6 (3.22) and

Proposition 3.1 (i) that

n∑
i=1

En
i−1

[
1

nhn
δp
i,1(α0)δ

p′
i,1(α0)

]

=
1

nhn

n∑
i=1

En
i−1

[(
d∑

k,l=1

∂θp ā
(k)
i−1(β

−1
i−1)

(k,l)X̄
(l)
i,n

)

×
(

d∑
k′,l′=1

∂θp′ ā
(k′)
i−1(β

−1
i−1)

(k′,l′)X̄
(l′)
i,n

)
1{|∆iXn|≤hρ

n}

]

P−→
d∑

k,l,k′,l′=1

∫
∂θp ā

(k)∂θp′ ā
(k′)(β−1)(k,l)(β−1)(k′,l′)(β)(l,l′)(x, α0) dπ

=

∫ (
∂θp ā

)∗ (
β−1

) (
∂θp′ ā

)
(x, α) dπ.

Proof of (3.46)

It follows by the direct computation that

n∑
i=1

En
i−1

[
1

nhn
δp
i,2(α0)δ

p′
i,2(α0)

]
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=
1

nhn

n∑
i=1

En
i−1

[{
∂θp

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n}

− hn

∫
∂θpΦn(Xtni−1

, y) dy

}

×
{
∂θp′

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n}

− hn

∫
∂θp′Φn(Xtni−1

, y) dy

}]

=
1

nhn

n∑
i=1

En
i−1

[
∂θp

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)

× ∂θp′

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n}
]

+Op(
√
hnbn)

P−→
∫∫

∂θpΨ∂θp′Ψ

Ψ
(y, x) dy dπ.

The last convergence is proved by the same argument as in the proof of (3.43) with

v = 2 since, for m = 0, 1,∣∣∣∂m
y

[
∂θp log Φn(θ, x, y)∂θp′ log Φn(θ, x, y)ϕ2

n(x, y)
]∣∣∣ ≤ O(

√
bn)(1 + |x|)C(1 + |y|)C.

Proof of (3.47)

Noticing that |X̄(l)
i,n|1{|∆iXn|≤hρ

n} = R(α, hρ
n, Xtni−1

), we see from Lemma 3.6 (3.21) that

n∑
i=1

En
i−1

[
1

nhn
δp
i,1(α0)δ

p′
i,2(α0)

]

= −1

n

n∑
i=1

En
i−1

[
d∑

k,l=1

{∫
∂θpΦn(Xtni−1

, y) dy

}
∂θp ā

(k)
i−1(β

−1
i−1)

(k,l)X̄
(l)
i,n1{|∆iXn|≤hρ

n}

]

= −1

n

n∑
i=1

En
i−1

[
d∑

k,l=1

{∫
∂θpΦn(Xtni−1

, y) dy

}
∂θp ā

(k)
i−1(β

−1
i−1)

(k,l)X̄
(l)
i,n1Cn

i,0

]
+ op(h

2
n)

= O(h2
n).

Proof of (3.48)

Using the equalities (3.22), (3.24), and the relation

∂σq det βi−1

detβi−1
= −tr

[
∂σqβ

−1
i−1βi−1

]
= tr

[
∂σqβi−1β

−1
i−1

]
.
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we see that
n∑

i=1

En
i−1

[
1

n
ζq
i (α0)ζ

q′
i (α0)

]

=
1

4n

n∑
i=1

En
i−1

[{
d∑

k,l=1

∂σq(β
−1
i−1)

(k,l)

hn
X̄

(k)
i,n X̄

(l)
i,n +

∂σq detβi−1

detβi−1

}

×
{

d∑
k′,l′=1

∂σq′ (β
−1
i−1)

(k′,l′)

hn
X̄

(k′)
i,n X̄

(l′)
i,n +

∂σq′ detβi−1

detβi−1

}
1{|∆iXn|≤hρ

n}

]

=
1

4n

n∑
i=1

[
d∑

k,l,k′,l′=1

e−λ0hn(∂σqβ
−1
i−1)

(k,l)(∂σq′β
−1
i−1)

(k′,l′)
(
β

(k,l)
i−1 β

(k′,l′)
i−1 + β

(k,k′)
i−1 β

(l,l′)
i−1

+ β
(k,l′)
i−1 β

(k′,l)
i−1

)
+

d∑
k′,l′=1

e−λ0hn
∂σq detβi−1

detβi−1

∂σq′ (β
−1
i−1)

(k′,l′)β
(k′,l′)
i−1

+

d∑
k,l=1

e−λ0hn
∂σq′ detβi−1

detβi−1
∂σq (β

−1
i−1)

(k,l)β
(k,l)
i−1

+ e−λ0hn
∂σq detβi−1

detβi−1

∂σq′ detβi−1

detβi−1

]
+Op(h

4ρ
n )

P−→ 1

2

∫
tr[(∂σqβ)β−1(∂σq′β)β−1] dπ.

The last convergence is deduced by Proposition 3.1 (i).

Proof of (3.49)

For v = 1, it follows that
n∑

i=1

En
i−1

[
1

n
√
hn

δp
i,1(α0)ζ

q
i (α0)

]

= − 1

n
√
hn

n∑
i=1

d∑
k,l,k′l′=1

1

2hn
∂θp ā

(k)
i−1(β

−1
i−1)

(k,l)∂σq(β
−1
i−1)

(k′,l′)

× En
i−1

[
X̄

(l)
i,nX̄

(k′)
i,n X̄

(l′)
i,n 1{|∆iXn|≤hρ

n}
]

− 1

n
√
hn

n∑
i=1

1

2

d∑
k,l=1

∂θp ā
(k)
i−1(β

−1
i−1)

(k,l)∂σq detβi−1

detβi−1
En

i−1

[
X̄

(l)
i,n1{|∆iXn|≤hρ

n}
]
.

Noticing that |X̄(l)
i,n|1{|∆iXn|≤hρ

n} = R(α, hρ
n, Xtni−1

), we see from Lemma 3.6 (3.21) and

(3.23) that

n∑
i=1

En
i−1

[
1

n
√
hn

δp
i,1(α0)ζ

q
i (α0)

]
=

1

n
√
hn

n∑
i=1

R(α, hn, Xtni−1
) +Op(

√
hn)
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P−→ 0.

For v = 2, by using Lemma 3.6 (3.22), we see that

n∑
i=1

En
i−1

[
1

n
√
hn

δp
i,2(α0)ζ

q
i (α0)

]

= − 1

n
√
hn

n∑
i=1

En
i−1

[{
d∑

k,l=1

∂σq(β
−1
i−1)

(k,l)

2hn
X̄

(k)
i,n X̄

(l)
i,n +

1

2

∂σq detβi−1

detβi−1

}

×
(
hn

∫
∂θpΦn(Xtni−1

, y) dy

)
1{|∆iXn|≤hρ

n}

]

= op

(√
hn

)
.

Proof of (3.50)

For v = 1, it follows that

n∑
i=1

En
i−1

[∣∣∣∣ 1√
nhn

δp
i,1(α0)

∣∣∣∣
2+ν

]

≤ Cν

n1+ν/2h
1+ν/2
n

n∑
i=1

d∑
k,l=1

2∑
j=0

∣∣∣∂θp ā
(k)
i−1(β

−1
i−1)

(k,l)
∣∣∣2+ν

En
i−1

[∣∣∣X̄(l)
i,n

∣∣∣2+ν

1Cn
i,j

]
.

Noticing that En
i−1

[∣∣∣X̄(l)
i,n

∣∣∣2+ν

1Cn
i,0

]
= R(α, h

1+ν/2
n , Xtni−1

) from (3.20), we have

En
i−1

[∣∣∣∣ 1√
nhn

δp
i,1(α0)

∣∣∣∣
2+ν

]
= Op

(
1

nν/2

)
+ op

(
hn

nν/2h
ν/2
n

)
.

For v = 2, it follows that

n∑
i=1

En
i−1

[∣∣∣∣ 1√
nhn

δp
i,2(α0)

∣∣∣∣
2+ν

]

≤ Cν

n1+ν/2h
1+ν/2
n

n∑
i=1

En
i−1

[∣∣∣∣∣∂θp

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)

∣∣∣∣∣
2+ν

× 1{|∆iXn|>hρ
n} + h2+ν

n

∣∣∣∣∣
∫
∂θpΦn(Xtni−1

, y) dy

∣∣∣∣∣
2+ν]

≤ Cν

n1+ν/2h
1+ν/2
n
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×
n∑

i=1

En
i−1

[∣∣∣∣∣∂θp

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)

∣∣∣∣∣
2+ν (

1Dn
i,1

+ 1Dn
i,2

)]

+Op

(
h

1+ν/2
n

nν/2

)
.

Here, it follows from Assumption A9 (3.3) that∣∣∣∣∣∂θp

{
log Φn(Xtni−1

,∆iX
n)
}
ϕn(Xtni−1

,∆iX
n)

∣∣∣∣∣ ≤ ε−1
n L1(∆iX

n)(1 + |Xtni−1
|)C

= R(α, ε−1
n , Xtni−1

)

since L1 is a bounded function given in (3.3). Then we have

n∑
i=1

En
i−1

[∣∣∣∣ 1√
nhn

δp
i,2(α0)

∣∣∣∣
2+ν

]
≤ ε

−(2+ν)
n

n1+ν/2h
1+ν/2
n

n∑
i=1

R(α, hn, Xtni−1
) +Op

(
h

1+ν/2
n

nν/2

)

= Op

((
bn
nhn

)ν/2

b(1−2ν)/5
n

)
+Op

(
h

1+ν/2
n

nν/2

)
.

The last term converges to zero if ν ≥ 1/2.

Proof of (3.51)

It follows by the direct computation that

n∑
i=1

En
i−1

[∣∣∣∣ 1√
n
ζq
i (α0)

∣∣∣∣
2+ν

]

≤ Cν

n1+ν/2h2+ν
n

n∑
i=1

d∑
k,l=1

En
i−1

[∣∣∂σq(β
−1
i−1)

(k,l)
∣∣2+ν

∣∣∣X̄(k)
i,n X̄

(l)
i,n

∣∣∣2+ν

1{|∆iXn|≤hρ
n}

]

+
Cν

n1+ν/2

n∑
i=1

∣∣∣∣∂q detβi−1

detβi−1

∣∣∣∣
2+ν

P n
i−1{|∆iX

n| ≤ hρ
n}

≤ C

n1+ν/2h2+ν
n

n∑
i=1

d∑
k,l=1

2∑
j=0

∣∣∂σq (β
−1
i−1)

(k,l)
∣∣2+ν

En
i−1

[∣∣∣X̄(k)
i,n X̄

(l)
i,n

∣∣∣2+ν

1Cn
i,j

]

+Op

(
1

nν/2

)
.

We notice that En
i−1

[∣∣∣X̄(k)
i,n X̄

(l)
i,n

∣∣∣2+ν

1Cn
i,0

]
= R(α, h2+ν

n , Xtni−1
) from (3.20) and that

En
i−1

[∣∣∣X̄(k)
i,n X̄

(l)
i,n

∣∣∣2+ν

1Cn
i,j

]
≤ R(α, h2ρ(2+ν)

n , Xtni−1
)P n

i−1{Cn
i,j}
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= R(α, h2ρ(2+ν)+2
n , Xtni−1

)

for j = 1, 2. Then we have

n∑
i=1

En
i−1

[∣∣∣∣ 1√
n
ζq
i (α0)

∣∣∣∣
2+ν

]
=

1

nν/2h2+ν
n

Op

(
h2ρ(2+ν)+2

n

)
+Op

(
1

nν/2

)

= Op

(
hµ

n

nν/2h
ν/2
n

)
+Op

(
1

nν/2

)
,

where µ = 2ρ(2 + ν) − ν/2 = 2(2 + ν)

(
ρ− ν

4(ν + 2)

)
. If we take ν > 0 sufficiently

small, then µ > 0 since 2/(γ + 1) ≤ ρ < 1/2. This completes the proof． �



Chapter 4

Parametric estimation in infinite

activity models

In Chapter 3, we treated finite activity models. The method proposed there worked

if the Lévy density f satisfies supz |f(z)| < B for a constant B > 0; see Remark 3.1.

However, we sometimes need a more general measure f admitting
∫
E f(z) dz = ∞ in

some applications. In this chapter, we consider the inference for such infinite activity

models from sampled data. The essential idea is the same as in Chapter 3; classifying

the increments of the data. We construct a single estimating function having two parts:

the continuous part is constructed by the small increments in the same way as in the

previous chapter, and the jump part is a moment-type estimating function constructed

by the large increments. The meaning of small and large are important, and we will

make them be clear in Section 4.2.

4.1 Models and assumptions

On a filtered probability space (Ω,F , (Ft)t≥0, P ), we consider a d-dimensional stochas-

tic process X = (Xt)t≥0 which is a solution to the following stochastic differential

equation:⎧⎨
⎩ dXt = a(Xt, θ) dt+ b(Xt, σ) dwt +

∫
�k

c(Xt−, z, θ) rθ(dt, dz),

X0 = x0,
(4.1)

where x0 is a random variable on R
d, θ and σ are parameters, and their parameter

spaces Θ and Π are compact convex subsets of R
m1 and R

m2 respectively, the coefficient

a, b and c are known functions such that a : R
d ×Θ → R

d, b : R
d ×Π → R

d ⊗R
r and

79
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c : R
d×R

k×Θ → R
d. In this chapter, we admit the case where k �= d. Moreover (wt)t≥0

is an r-dimensional Wiener process, rθ(dt, dz) := p(dt, dz)−qθ(dt, dz) is a compensated

Poisson random measure, that is, p is a time-homogeneous Poisson random measure

on R+ × R
k, and qθ is its intensity measure of the form q(dt, dz) = fθ(z) dzdt, where∫

�k |z|2 ∧ 1fθ(z) dz <∞ for all θ. We set α := (θ, σ) ∈ Ξ := Θ×Π and m := m1 +m2.

Our interest is to estimate the parameters θ and σ jointly from sampled data

{Xtni
}n

i=1, where tni = ihn under the condition that hn → 0 and nhn → ∞.

We make the following assumptions A1-A5.

A 1 There exists a constant L > 0 and a function ζ(z) which satisfies |ζ(z)|1{|z|≤1} ≤
C|z| and |ζ(z)| ≤ C(1 + |z|)C for a constant C > 0 such that

|a(x, θ0) − a(y, θ0)| + |b(x, σ0) − b(y, σ0)| ≤ L|x− y|,
|c(x, z, θ0) − c(y, z, θ0)| ≤ ζ(z)|x− y|, |c(x, z, θ0)| ≤ ζ(z)(1 + |x|).

A 2 The process X is ergodic and stationary for α = α0 with an invariant measure π

in the sense of Section 2.4, and π satisfies that∫
|x|p π(dx) <∞ (4.2)

for any p ≥ 0.

A 3 β is positive definite and infx,σ detβ(x, σ) > 0.

A 4 For l = 0, 1, 2 and v = x, α, there exist the partial derivatives ∂l
va(x, θ) and

∂l
vb(x, σ) such that |∂l

va(x, θ)| + |∂l
vb(x, σ)| ≤ C(1 + |x|)C , and they are continuous for

fixed α. Moreover, there exist the partial derivatives ∂l
v

∫
�k

∏p
j=1 c

(lj)(x, z, θ)fθ(z) dz

and ∂l
vc(x, z, θ) for any p ∈ N such that

|∂l
vc(x, z, θ)| +

∣∣∣∣∣∂l
v

∫
�k

p∏
j=1

{
c(lj)(x, z, θ)

}
fθ(z) dz

∣∣∣∣∣ ≤ ζ(z)(1 + |x|)C ,

where lj = 1, . . . , d and we allow the case where lj = li for i �= j.

As well as in Chapter 3, we shall identify p with a random counting measure asso-

ciated with a Lévy process z with the Lévy density fθ(z), that is,

p(dt, dz) =
∑
s≥0

1{|∆zs|>0}1(s,∆zs)(dt, dz),

where the process z is independent of a Wiener process w.
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In estimation problems of Lévy measures, it is crucial that what kinds of singular-

ities Lévy measures have. In Chapter 3, we studied the case where the Lévy density

decreased around the origin in the order of some polynomial and had the finite total

mass. In this chapter, however, we would like to treat more general models, that is,

λθ =
∫
�k fθ(z) dz may be possibly finite or possibly infinite. If λθ is finite then z is a

compound Poisson process with a distribution of jumps (λθ)
−1fθ(z) dz. This is a finite

activity model dealt with in Chapter 3. If λθ is infinite then z is a Lévy process which

has infinitely many jumps even in any finite time interval. This is an infinite activity

model. In the latter model, however, the process z
(εn)
t =

∑
s≤t ∆zs1{|∆zs|>εn} (This is

always a finite sum for fixed t and fixed n.) for some εn > 0 is a compound Poisson

process with a distribution of jumps (λ
(εn)
θ )−1f (εn)(z) dz, where λ

(εn)
θ =

∫
f

(εn)
θ (z) dz

and f
(εn)
θ = fθ1{|z|>εn}; see Chapter 2. Thanks to this fact, it is convenient to split the

jump term of X into two parts by a sequence εn ↓ 0 as follows:∫
�k

c(Xt−, z, θ) rθ(dt, dz) =: dBθ
n(t) + dJθ

n(t),

and

dBθ
n(t) :=

∫
|z|≤εn

c(Xt−, z, θ) rθ(dt, dz),

dJθ
n(t) :=

∫
�k

c(Xt−, z, θ) {p(εn)(dt, dz) − q
(εn)
θ (dt, dz)},

where p(εn) is a random measure generated by z(εn) and q
(εn)
θ is its intensity measure,

that is, q
(εn)
θ (dt, dz) = f

(εn)
θ (z) dzdt. When n is sufficiently large, so εn is sufficiently

small, then it may be possible to regard Bθ
n(t) as a small diffusion approximately.

Using these notations, and assuming that
∫
�k c(x, z, θ)f

(εn)
θ (z) dz < ∞ for each n,

we can rewrite the first model (4.1) in the form

dXt = an(Xt, θ) dt+ b(Xt, σ) dwt + dBθ
n(t) +

∫
�k

c(Xt−, z, θ) p(εn)(dt, dz), (4.3)

where an(x, θ) = a(x, θ) − ∫
�k c(x, z, θ)f

(εn)
θ (z) dz.

To discuss the asymptotic theory, we have to suppose the existence of the limit of

an, that is, an(x, θ) → ã(x, θ) := a(x, θ) − ∫
�k c(x, z, θ)fθ(z) dz should exist. In order

to ensure these conditions, we will assume the following assumption.

A 5 For any x ∈ R
d, θ ∈ Θ and any p ≥ 1,∫

�k

|z|p∂v
θfθ(z) dz <∞,

where v = 0, 1.
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It seems that this assumption is too restrictive, but this can be satisfied in a very

wide class of Lévy measures. Actually, many practical Lévy measures in applications

such as gamma, inverse Gaussian, variance gamma, normal inverse Gaussian or some

generalized tempered stable processes satisfy that

|∂v
θfθ(z)| ≤ L|z|−αe−C|z|

for α < 2 and some positive constants L and C, although stable processes with Lévy

measures of the form fθ(z) = γ|z|−(α+1) (0 < α < 2) do not satisfy these assumptions.

Under Assumption A5, the above an(x, θ) and ã(x, θ) are well-defined since the

integrals
∫
�k c(x, z, θ)g

(n)
θ (z) dz exist for g

(n)
θ = fθ or f

(εn)
θ .

Definition 4.1 Under Conditions A1 and A5, we put

an(x, θ) := a(x, θ) −
∫
�k

c(x, z, θ)f
(εn)
θ (z) dz, (4.4)

ã(x, θ) := a(x, θ) −
∫
�k

c(x, z, θ)fθ(z) dz, (4.5)

where f
(εn)
θ (z) = fθ(z)1{|z|>εn}.

4.2 Selection of data

As we have described in the previous section, we deal with the process Bθ
n(t) in (4.3)

as if the small Brownian shocks. Therefore, we can regard the model (4.3) as a finite

activity model, then the same idea as in Chapter 3 may be applied to this model, that

is, if |∆iX
n| ≤ hρ

n, then we can judge that the jumps by
∫ t

0

∫
c(Xs−, z, θ)p(εn)(ds, dz)

did not occur. The next lemma justifies this treatment.

Let τn
i (εn) be stopping times defined by τn

i (εn) := inf
{
t ∈ [tni−1, t

n
i ); |∆zt| > εn

}
for

fixed n, where z is a Lévy process which generates the random measure p as already

mentioned. Then the following equality is valid.

Lemma 4.1 Let ρ ∈ (0, 1/2) and εn = hρ′
n with ρ < ρ′. Then it follows for any p ≥ 1

and i = 1, . . . , n that

P n
i−1

{
sup

t∈[tni−1,τn
i (εn))

|Xt −Xtni−1
| > hρ

n

}
= R(α, hp

n, Xtni−1
). (4.6)

This lemma implies that if there does not exist any jump with |∆zt| > εn in the

interval [tni−1, t
n
i ) then the increment of the path of X in that interval is smaller than

hρ
n with a large probability. Let us prove this lemma.
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Proof． Let ‖Y ‖i,n := supu∈(tni−1,tni ] |Yu| for a process Y . On the interval [tni−1, τ
n
i (εn)),

the solution processX to (4.1) satisfies a stochastic differential equation dXt = an(Xt) dt+

b(Xt) dwt +dBn(t). Therefore, it follows from the Lipschitz continuity of an and Gron-

wall’s inequality that, for sufficiently large n,

|Xt −Xtni−1
| ≤ C

⎛
⎝hn|an(Xtni−1

)| +
∥∥∥∥∥
∫ ·

tni−1

b(Xs−) dws

∥∥∥∥∥
i,n

+ ‖Bn(·) − Bn(tni−1)‖i,n

⎞
⎠ .

We will only show Qn
i := P n

i−1{C‖Bn(·) − Bn(tni−1)‖i,n > hρ
n} = R(α, hp

n, Xtni−1
) since

P n
i−1

{
Chn|an(Xtni−1

)| > hρ
n

}
= R(α, hp

n, Xtni−1
)

P n
i−1

⎧⎨
⎩
∥∥∥∥∥
∫ ·

tni−1

b(Xs−) dws

∥∥∥∥∥
i,n

> hρ
n

⎫⎬
⎭ = R(α, hp

n, Xtni−1
)

were shown in Lemma 3.1 in Chapter 3.

According to Markov’s inequality and Lemma 4.2, for p′ = 2q (q ∈ N),

Qn
i ≤ Ch−p′ρ

n En
i−1

[∥∥Bn(·) − Bn(tni−1)
∥∥p′

i,n

]

≤ Ch−p′ρ
n En

i−1

⎡
⎣ sup

u∈(tni−1,tni ]

∣∣∣∣∣
∫ u

tni−1

∫
|z|≤εn

c(Xs−, z) r(ds, dz)

∣∣∣∣∣
p′
⎤
⎦

≤ Ch−p′ρ
n En

i−1

[
sup

u∈(tni−1,tni ]

∫ u

tni−1

∫
|z|≤εn

|c(Xs−, z)|p′ q(ds, dz)
]
.

Noticing that |c(x, z, θ)| ≤ ζ(z)(1 + |x|) and |ζ(z)|1{|z|≤1} ≤ C|z|, we have

Qn
i ≤ Ch−p′ρ

n En
i−1

[
sup

u∈(tni−1,tni ]

∫ u

tni−1

∫
|z|≤εn

|z|p′−2|z|2(1 + |Xs−|)p′ q(ds, dz)

]

= R(α, hp′(ρ′−ρ)+1−2ρ′
n , Xtni−1

).

Since we can take p′ arbitrary large, Qn
i = R(α, hp

n, Xtni−1
) for any p ≥ 1 when ρ′ > ρ.

This completes the proof. �

Lemma 4.2 For p = 2q, q ∈ N, tni−1 ≤ t ≤ tni，and any Borel subset B of R
k,

En
i−1

[∣∣∣∣∣
∫

B

∫ t

tni−1

c(Xs−, z) r(ds, dz)

∣∣∣∣∣
p]

≤ CpE
n
i−1

[∫
B

∫ t

tni−1

|c(Xs−, z)|p q(ds, dz)
]
. (4.7)

Proof． This is the direct result from Lemma 3.4, in which we replace c(Xs−, z) with

c(Xs−, z)1B(z) for any Borel set B of R
k. �
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Lemma 4.3 Suppose that the process X̃ satisfies the stochastic differential equation

dX̃t = an(X̃t) dt+ b(X̃t) dwt + dB̃n(t),

where B̃n(t) =

∫ t

0

∫
|z|≤εn

c(X̃s−, z) r(ds, dz). Then, for k ≥ 2, k ∈ N and t ∈ [tni−1, t
n
i )，

En
i−1

[
|X̃t − X̃tni−1

|k
]
≤ Ck|t− tni−1|k/2∧{1+ρ′(k−2)}(1 + |X̃tni−1

|)k. (4.8)

Proof． We suppose that k = 2q (q ∈ N). Applying Jensen’s inequality, Burkholder-

Davis-Gundy’s inequality and Lemma 4.2, we see that

En
i−1

[
|X̃t − X̃tni−1

|k
]

≤ CkE
n
i−1

[ ∣∣∣∣∣
∫ t

tni−1

an(X̃s) ds

∣∣∣∣∣
k

+

∣∣∣∣∣
∫ t

tni−1

b(X̃s−) dws

∣∣∣∣∣
k

+

∣∣∣∣∣
∫ t

tni−1

∫
|z|≤εn

c(X̃t−, z) r(dt, dz)

∣∣∣∣∣
k ]

≤ Ck

{
hk−1

n

∫ t

tni−1

En
i−1

[
|an(X̃s)|k

]
ds+

∣∣∣∣∣
∫ t

tni−1

En
i−1

[
|b(X̃s−)|2

]
ds

∣∣∣∣∣
k/2

+ En
i−1

⎡
⎣
∣∣∣∣∣
∫ t

tni−1

∫
|z|≤εn

|c(X̃s−, z)|2p(εn)(ds, dz)

∣∣∣∣∣
k/2
⎤
⎦ ds

}

≤ Ck

{
hk−1

n

∫ t

tni−1

En
i−1

[
|an(X̃s)|k

]
ds+ hk/2−1

n

∫ t

tni−1

En
i−1

[
|b(X̃s)|k

]
ds

+ εn
(k−2)

∫ t

tni−1

∫
|z|≤εn

En
i−1

[
|c(X̃s−, z)|2

]
q(εn)(ds, dz)

}
.

Noticing that, on the set {|z| ≤ εn},

|c(X̃s−, z)|2 ≤ ζ2(z)(1 + |X̃s−|)2 ≤ C|z|2(1 + |X̃s−|)k

since k ≥ 2, and using the linear growthness of a and b, we obtain that

En
i−1

[
|X̃t − X̃tni−1

|k
]

≤ Ck

{
|t− tni−1|k/2 + |t− tni−1|1+ρ′(k−2)

}
(1 + |Xtni−1

|)k

+ Ck

∫ t

tni−1

En
i−1

[
|X̃s − X̃tni−1

|k
]
ds.

Gronwall’s inequality leads the consequence for k = 2q.

It is easy to extend the above result to the case of arbitrary k ≥ 2 by using the

binary expansion of k and Cauchy-Schwarz’s inequality repeatedly. �
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Corollary 4.1 Let ρ ∈ (0, 1/2) and εn = hρ′
n with ρ < ρ′. Under the same assumptions

as in Lemma 4.3,

E

[
sup

s,t∈[tni−1,tni ]

|X̃t − X̃s|k
]

= O
(
hk/2∧{1+ρ′(k−2)}

n

)
. (4.9)

Proof． By the same argument as in the proof of Lemma 4.3, it follows that

E

[
sup

s,t∈[tni−1,tni ]

|X̃t − X̃s|k
]

≤ Ck

{
hk−1

n

∫ tni

tni−1

E
[
|an(X̃s)|k

]
ds+ hk/2−1

n

∫ tni

tni−1

E
[
|b(X̃s)|k

]
ds

+ εn
(k−2)

∫ tni

tni−1

∫
|z|≤εn

E
[
|c(X̃s−, z)|2

]
q(εn)(ds, dz)

}

= O
(
hk/2∧{1+ρ′(k−2)}

n

)
. �

Let Jn
i (εn) be the number of large jumps of z; |∆z| > εn in the interval [tni−1, t

n
i ), and

we set {|∆iX
n| ≤ hρ

n} = Cn
i,0(εn) ∪ Cn

i,1(εn) and {|∆iX
n| > hρ

n} = Dn
i,0(εn) ∪ Dn

i,1(εn),

where

Cn
i,0(εn) = {|∆iX

n| ≤ hρ
n, J

n
i (εn) = 0},

Cn
i,1(εn) = {|∆iX

n| ≤ hρ
n, J

n
i (εn) ≥ 1},

Dn
i,0(εn) = {|∆iX

n| > hρ
n, J

n
i (εn) = 0},

Dn
i,1(εn) = {|∆iX

n| > hρ
n, J

n
i (εn) ≥ 1}.

Lemma 4.1 immediately yields the next lemma.

Lemma 4.4 Let ρ ∈ (0, 1/2) and εn = hρ′
n with ρ < ρ′. Assume that λ

(εn)
0 hn = O(1)

as n→ ∞. Then, for any p ≥ 1,

P n
i−1{Cn

i,0(εn)} = e−λ
(εn)
0 hnR(α, 1, Xtni−1

),

P n
i−1{Dn

i,0(εn)} = e−λ
(εn)
0 hnR(α, hp

n, Xtni−1
),

P n
i−1{Cn

i,1(εn)} = λ
(εn)
0 hne

−λ
(εn)
0 hnR(α, 1, Xtni−1

),

P n
i−1{Dn

i,1(εn)} = λ
(εn)
0 hne

−λ
(εn)
0 hnR(α, 1, Xtni−1

),

where λ
(εn)
0 =

∫
|z|>εn

fθ0(z) dz.
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Proof． It is obvious that P n
i−1{Dn

i,0(εn)} = e−λ
(εn)
0 hnR(α, hp

n, Xtni−1
) by Lemma 4.1

since P n
i−1{Jn

i (εn) = 0} = e−λ
(εn)
0 hn. Hence P n

i−1{Cn
i,0(εn)} = e−λ

(εn)
0 hnR(α, 1, Xtni−1

)

since P n
i−1{Cn

i,0(εn)} = P n
i−1{Jn

i (εn) = 0} − P n
i−1{Dn

i,0(εn)}. The other proofs are easy

since P n
i−1{Jn

i (εn) = 1} = λ
(εn)
0 hne

−λ
(εn)
0 hn . �

In Chapter 3, we decomposed the events {|∆iX
n| ≤ hρ

n} and {|∆iX
n| > hρ

n} into

three events, that is, for no jump, for a single jump and for more than two jumps.

However, it is difficult to discriminate between the event {|∆iX
n| > hρ

n, J
n
i (εn) = 1}

and the event {|∆iX
n| ≤ hρ

n, J
n
i (εn) = 1} in the case where

∫
fθ(z) dz = ∞. In the

above lemma, we take ρ′ with ρ′ > ρ in order to ignore the probability P n
i−1{Dn

i,0(εn)},
otherwise, the probability P n

i−1{|∆iX
n| ≤ hρ

n, J
n
i (εn) = 1} can not be ignored. On the

other hand, if we take ρ′ with ρ′ ≤ ρ, then the probability P n
i−1{Dn

i,0(εn)} can not be

ignored although the probability P n
i−1{|∆iX

n| ≤ hρ
n, J

n
i (εn) = 1} can be ignored. That

is a tradeoff, so we can not identify the event of a single jump by such a filter, therefore

we could not expect an efficient estimator for the jump part.

We assumed in Chapter 3 the condition of a nondegeneracy of the coefficient c(x, z):

infx |c(x, z, θ0)| > c0|z| for a positive constant c0 near the origin in order to discriminate

the event of no jump and the event of a single jump. Of course, it is not an essential

assumption but it seems much trouble without such an assumption when you compute

an estimator explicitly. However, we do not need such an assumption in our method

since we do not demand the efficiency for parameters in jump part.

Remark 4.1 One can easily find that it is possible to make the above filter {|∆iX
n| ≤

Lhρ
n} for any constant L > 0. As a matter of fact, the value of L has sometimes a great

influence on the performance of estimation as we show in Section 4.4. However, it is

difficult to select the optimal L in practice in our setting where infinitely many jumps

occur. We will discuss the selection problems of such a filter elsewhere. Throughout

this chapter, we suppose that L = 1 although the following all results are valid for any

L > 0.

4.3 Estimating functions and asymptotic results

4.3.1 Moment type estimating functions

In this section, we propose estimating functions. In the following discussion, we assume

that ρ ∈ (0, 1/2) and εn = hρ′
n with ρ < ρ′, and we set X̄i,n(θ) = ∆iX

n − hnan,i−1(θ).

Recall that an(x, θ) = a(x, θ) − ∫
�k c(x, z, θ)f

(εn)
θ (z) dz and an,i−1(θ) = an(Xtni−1

, θ).
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In Chapter 3, a natural contrast function of MLE-type was proposed under the

condition that
∫
�k fθ(z) dz < ∞. To estimate the drift and the diffusion parameters,

they picked up the data Xtni−1
and ∆iX

n with {|∆iX
n| ≤ hρ

n} and made use of a

contrast of an usual diffusion process:

1

2hn

n∑
i=1

(X̄i,n)∗(θ)β−1
i−1(σ)X̄i,n(θ)1{|∆iXn|≤hρ

n} +
n∑

i=1

1

2
log detβi−1(σ)1{|∆iXn|≤hρ

n}.(4.10)

It would be natural to make use of the derivatives with respect to parameters of this

contrast function as an estimating function since we can judge again that there does

not exist a large jump in an interval with {|∆iX
n| ≤ hρ

n}. On the other hand, we

only infer that at least a single large jump occurred from the fact {|∆iX
n| > hρ

n}
thanks to that P n

i−1{Dn
i,0(εn)} = R(α, hp

n, Xtni−1
), and we can not identify the number

of jumps of
∫ t

0

∫
�k c(Xs−, z, θ)p(εn)(ds, dz). Therefore, it may be better to approximate

the moments

E

[∫ t

0

∫
�k

q∏
j=1

c(lj)(Xs−, z, θ)p(εn)(ds, dz)

]
(q ≥ 1) (4.11)

by the data Xtni−1
and ∆iX

n with {|∆iX
n| > hρ

n}, where lj = 1, 2, . . . , d and we allow

the case where li = lj for i �= j.

We use the following notations to define an estimating function. Let {G(j)
n (x, α)}j

be a sequence of R-valued functions defined on R
d × Ξ which satisfy the following

conditions:

|G(j)
n (x, α)| ≤ L(x, α), |∂αG

(j)
n (x, α)|, |∂xG

(j)
n (x, α)| ≤ C(1 + |x|)C (4.12)

for fixed j and all n, where L2(x, α) is a π-integrable function for all α and there exists

a function G(j)(x, α) which is differentiable with respect to α such that for k = 0, 1,

∂k
αG

(j)
n (x, α) → ∂k

αG
(j)(x, α) π-a.s. (4.13)

Notice that ∂k
αG

(j)(x, α) is π-integrable for all α since {∂k
αG

(j)
n }n is uniformly integrable.

Moreover, let Hn,Q(x, y) be R-valued functions defined on R
d × R

d such that

Hn,Q(x, y) =

Q∑
Q′=2

G(Q′)
n (x, α)

Q′∏
j=1

y(lj) (4.14)

for an integer Q ≥ 2, and we write HQ(x, y) =
∑Q

Q′=2G
(Q′)(x, α)

∏Q′
j=1 y

(lj).
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Definition 4.2 We define the estimating function

ψn(α) =

n∑
i=1

(
ψ

(1)
i,n (α) + ψ

(2)
i,n (α), ψ

(3)
i,n (α)

)∗

as follows:

ψ
(1)
i,n (α) =

(
ψ

(1)
i,n,q

)
1≤q≤m1

, ψ
(2)
i,n (α) =

(
ψ

(2)
i,n,q

)
1≤q≤m1

, ψ
(3)
i,n (α) =

(
ψ

(3)
i,n,r

)
1≤r≤m2

and

ψ
(1)
i,n,q(α) = Hn,Qq

(
Xtni−1

, X̄i,n

)
1{|∆iXn|>hρ

n} − hn

∫
�k

Hn,Qq(Xtni−1
, ci−1(z, θ))fθ(z) dz,

ψ
(2)
i,n,q(α) = ∂θqa

∗
n,i−1(θ)β

−1
i−1(σ)X̄i,n(θ)1{|∆iXn|≤hρ

n},

ψ
(3)
i,n,r(α) =

{
1

hn
X̄∗

i,n(θ)∂σrβ
−1
i−1(σ)X̄i,n(θ) +

∂σr det βi−1

detβi−1
(σ)

}
1{|∆iXn|≤hρ

n},

where Qq ≥ 2 and X̄i,n(θ) = ∆iX
n − hnan,i−1(θ). On lj in (4.14), lj = 1, 2, . . . , d and

we allow the case where li = lj for i �= j.

The summation
∑n

i=1 ψ
(1)
i,n corresponds to the discretization of a weighted sum for

q = 2, . . . , Qq of the expectation (4.11). The summation
∑n

i=1 ψ
(2)
i,n and

∑n
i=1 ψ

(3)
i,n

correspond to the first derivatives of (4.10) with respect to θ and σ respectively.

Definition 4.3 We define the estimator of α0 as a solution α̂n to the equation

ψn(α) = 0.

This implies that we should determine the function Hn,Qq (so also Qq) so that there

exists a solution α̂n.

In applications, it may be better to choose Hn,Qq so that G
(j)
n (x, α) ≡ 0 for 1 ≤ j ≤

Qq − 1 for simplicity of computations, where Qq should be determined so that α̂n is

well-defined (see Section 5 for examples). Generally, G
(j)
n ’s play the roles of the weights

to add the two functions ψ(1) and ψ(2), and they should be selected in an optimal way.

However, it may not be so easy to find the optimal weights. That is a problem for the

future.

This estimating function gives partially efficient estimators, that is, the asymptotic

variances of the estimators for the parameters in the coefficient a are efficient in the

sense that they attain the asymptotic variances of the estimators from continuous

observations; see Remark 3.4 on this discussion, although the estimators for jump part
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are not efficient in this sense. However, it may be actually convenient to use this

estimating function because of the simplicity of both the selecting method of data and

the forms of the estimating function.

In order to obtain the consistency result, we assume the following A6: the identifi-

ability conditions. Below, we use the notation

Uq(x, θ, σ) =

∫ {
HQq(x, c(x, z, θ0))fθ0(z) −HQq(x, c(x, z, θ))fθ(z)

}
dz

+ ∂θq ã
∗(x, θ)β−1(x, σ) {ã(x, θ0) − ã(x, θ)} .

The integral
∫
Uq(x, θ, σ) dπ will appear later as the limit of

1

nhn

n∑
i=1

{
ψ

(1)
i,n,q + ψ

(2)
i,n,q

}
(α).

A 6 For π-almost all x ∈ R
d, σ = σ0 if and only if β(x, σ) = β(x, σ0). For all

q = 1, . . . , m1 and π-almost all x ∈ R
d, θ = θ0 if and only if Uq(x, θ, σ0) = Uq(x, θ0, σ0).

4.3.2 Consistency and asymptotic normality

Now we present the result on the asymptotic behavior of α̂n.

Theorem 4.1 Suppose Conditions A1 - A6, and that hn → 0, nhn → ∞ λ
(εn)
0 hρ

n → 0

as n→ 0 with ρ′ > ρ. Then the estimator α̂n has the consistency to the true α0:

α̂n
P→ α0 (n→ ∞).

What singularities of Lévy measures around the origin are admitted under the

assumption λ
(εn)
0 hρ

n → 0 as n → ∞? For example, let us consider the following one

dimensional stochastic differential equation with one dimensional parameter θ∗ ≥ 0:

dXt = a(Xt) dt+ b(Xt) dwt + c(Xt−) dz
θ∗0
t , (4.15)

and suppose that

fθ∗0 (z) = f̃θ∗01{|z|≤1} + f̄θ∗0 (z)1{|z|>1}, |f̃θ∗0 (z)| ∼ C|z|−θ∗0 (z → 0). (4.16)

We call such a parameter θ∗ the shape parameter. Originally, we need∫
|z|<εn

|z|2fθ∗0 (z) dz <∞,
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that is, 0 ≤ θ∗0 < 3. Under this setting, λ(εn)hρ
n = O

(
h

ρ′(1−θ∗0 )+ρ
n

)
+ O (hρ

n) if θ∗0 �= 1,

and λ(εn)hρ
n = O (hρ

n log hn) + O (hρ
n) if θ∗0 = 1, hence we need that 0 ≤ θ∗0 < 1 + ρ/ρ′.

Therefore, the models with 0 ≤ θ∗0 < 2 are allowed since we can take ρ′ (ρ′ > ρ) to be

sufficiently near to ρ.

Theorem 4.2 Suppose Conditions A1 - A6 and α0 is in the interior of Ξ, and that

hn → 0, nhn → ∞, λ
(εn)
0 hρ

n → 0 and n(λ
(εn)
0 )2h4ρ

n → 0 as n → 0. Moreover, we take

ρ′(> ρ) so that
∫
|z|≤εn

|z|2fθ0(z) dz = o
(
n−1/2

)
. Then

M1/2
n (α̂n − α0)

d−→ Nm

(
0, K−1

)
,

where Mn =

(
nhnIm1 0

0 nIm2

)
, Im is the m-dimensional identity matrix and K =(

K1 0

0 K2

)
with K−1

1 = (K ′∗
1)

−1
K ′′

1 (K ′
1)

−1,

(K ′
1)

(p,q) =

∫
(∂θp ã)

∗β−1(∂θq ã)(x, α0) dπ

−
Qq∑

Q′=2

∫∫
∂θpG

(Q′)(x, α0)

Q′∏
j=1

c(lj)(x, z, θ0)fθ0(z) dzdπ

+

Qq∑
Q′=2

∫ {
G(Q′)(x, α0)∂θp

∫
�k

Q′∏
j=1

c(lj)(x, z, θ0)fθ0(z) dz

}
dπ,

(K ′′
1 )(p,q) =

∫
(∂θp ã)

∗β−1(∂θq ã)(x, α0) dπ

+

Qq∑
Q=2

Q′
q∑

Q′=2

∫∫
G(Q)G(Q′)(x, α0)

{
Q+Q′∏
j=1

c(lj)(x, z, θ0)

}
fθ0(z) dzdπ,

(K2)
(p,q) =

1

2

∫
tr
[
(∂σpβ)β−1(∂σqβ)β−1

]
(x, σ0) dπ.

Remark 4.2 Suppose that X follows the SDE (4.15) with the Lévy measure (4.16).

If θ∗0 �= 1,

n(λ
(εn)
0 )2h4ρ

n = O
(
nh4ρ+2ρ′(1−θ∗0)

n

)
,

∫
|z|≤εn

z2fθ∗0 (z) dz = O

(√
h

2ρ′(3−θ∗0)
n

)
.

Hence we admit θ∗0 ≤ 1 + (4ρ− 1 − ν)/2ρ′ under the experimental design as nh1+ν
n →

0 (0 < ν < 1), that is, the model with θ∗ < 2 can be admitted for suitable ρ, ρ′ and ν.

Moreover, when θ∗0 = 1, we need

n(λ
(εn)
0 )2h4ρ

n = O
(
nh4ρ

n (log hn)2
) → 0,
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and it is possible for a proper choice of ρ. Hence θ∗0 = 1 is also admitted.

In the inference for infinite activity models, it is a big problem what the rate of

convergence is. If the parameter θ in the Lévy characteristic has the finite information,

that is,
∫
ḟ 2

θ /fθ(z) dz < ∞, where ḟθ stands for the first derivative with respect to

θ, the maximum rate of convergence should be
√
nhn since, even in the continuously

observed model up to time T (→ ∞), the rate becomes
√
T which is identified with√

nhn; see Akritas and Johnson [2] for Lévy processes and Sørensen [99] for jump-

diffusions. Our method attains the rate of convergence
√
nhn, therefore it is sometimes

a good rate. However the finiteness of the information is not so general, for example,

if z is a stable process with the Lévy density fθ(z) = θ1|z|−1−θ2 (θ2 ∈ (0, 2)), then the

information of θ = (θ1, θ2) becomes infinite:
∫
ḟ 2

θi
/fθi

(z) dz = ∞, and the maximum

rate of convergence would not be
√
nhn any more in this case. Actually, for the inference

of discretely observed Lévy processes, Woerner [113] showed the LAN results for the

scale parameter (θ1) of a stable process with the convergence rate
√
n under hn → 0

and nhn → ∞. Hence the better rate than
√
nhn may be demanded. However, as

Woerner [113] also showed, the maximal rates of convergence for the many important

examples are
√
nhn; see Section 3.1 in Woerner [113]. Therefore, it would not be so

pessimistic for the rate
√
nhn.

4.4 Examples and simulation study

We give some examples of X and show their simulation results.

Example 4.1 We consider the following one-dimensional SDE:

dXt = (θ1 − θ2Xt) dt+
√
σ dwt + dzt,

where θ2 > 0 and zt is a compound Poisson process with

∫
|z|>εn

zf(z) dz = 0 for large

n. As we have described in Example 2.2, this model is ergodic.

ψn(α) =
(
ψ(1)

n (α), ψ(2)
n (α), ψ(3)

n (α)
)∗
,

ψ(1)
n (α) =

n∑
i=1

σ−1
{

∆iX
n − hn

(
θ1 − θ2Xtni−1

)}
1{|∆iXn|≤hρ

n},

ψ(2)
n (α) =

n∑
i=1

Xtni−1
σ−1

{
∆iX

n − hn

(
θ1 − θ2Xtni−1

)}
1{|∆iXn|≤hρ

n},

ψ(3)
n (α) = −

n∑
i=1

X̄2
i,n(θ1, θ2)h

−1
n σ−21{|∆iXn|≤hρ

n} + σ−1

n∑
i=1

1{|∆iXn|≤hρ
n},
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where X̄i,n(θ1, θ2) = ∆iX
n −

(
θ1 − θ2Xtni−1

)
hn.

Let

S0 = hn

n∑
i=1

1{|∆iXn|≤hρ
n},

S1 = hn

n∑
i=1

Xtni−1
1{|∆iXn|≤hρ

n},

S2 = hn

n∑
i=1

X2
tni−1

1{|∆iXn|≤hρ
n},

S3 =

n∑
i=1

∆iX
n1{|∆iXn|≤hρ

n},

S4 =
n∑

i=1

∆iX
nXtni−1

1{|∆iXn|≤hρ
n}.

Then we have the following estimating equation:

θ1S0 = S3 + θ2S1, θ1S1 = S4 + θ2S2, σS0 =
n∑

i=1

X̄2
i,n(θ1, θ2)1{|∆iXn|≤hρ

n}.

Hence we have

θ̂1,n =
S2S3 − S1S4

S2
1 − S0S2

, θ̂2,n =
S1S3 − S0S4

S2
1 − S0S2

,

σ̂n = S−1
0

n∑
i=1

X̄2
i,n(θ̂1,n, θ̂2,n)1{|∆iXn|≤hρ

n}.

Example 4.2 We consider the following one-dimensional SDE:

dXt = −µXt dt+
√
σ dwt + dzθ

t ,

where µ > 0, zθ
t is a compound Poisson process with the Lévy density

fθ(z) =
λ√
2πν

exp

(
− z2

2ν

)

and θ = (µ, ν, λ). We set α = (θ, σ). First, we suppose that either λ0 or ν0 is known.

Then one of the simplest estimating functions is as follows:

ψn(α) =
(
ψ(j)

n (α)
)
1≤j≤3

,

ψ(1)
n (α) =

n∑
i=1

X̄2
i,n(µ)1{|∆iXn|>hρ

n} − nhn

∫
z2fθ(z) dz,
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ψ(2)
n (α) =

n∑
i=1

−Xtni−1
σ−1X̄i,n(µ)1{|∆iXn|≤hρ

n},

ψ(3)
n (α) = −

n∑
i=1

X̄2
i,n(µ)h−1

n σ−21{|∆iXn|≤hρ
n} + σ−1

n∑
i=1

1{|∆iXn|≤hρ
n},

where X̄i,n(θ) = ∆iX
n + µXtni−1

hn since
∫
|z|>εn

zfθ(z) dz = 0, and all the conditions

for hρ
n and ρ′ in Theorem 4.2 are satisfied if nh4ρ

n → 0 for any ρ′ with ρ < ρ′. This

estimating functions satisfy the identifiability condition A6.

The estimators of µ and σ are similarly obtained as in Example 4.1, and

µ̂n = −S4

S2

, σ̂n = S−1
0

n∑
i=1

X̄2
i,n(µ̂n)1{|∆iXn|≤hρ

n}. (4.17)

Moreover, noticing that
∫
z2kfθ(z) dz = (2k)!

2kk!
λνk, the estimator of ν or λ becomes

ν̂(0)
n = λ−1

0 T2(µ̂n), λ̂(0)
n = ν−1

0 T2(µ̂n), (4.18)

where Tk(µ) = 1
nhn

∑n
i=1 X̄

k
i,n(µ)1{|∆iXn|>hρ

n}.

When we estimate (λ, ν) jointly, we should add, for example, an estimating function

ψ(4)
n (α) =

n∑
i=1

X̄4
i,n(µ)1{|∆iXn|>hρ

n} − nhn

∫
z4fθ(z) dz. (4.19)

Then, the estimators become

ν̂n =
T4(µ̂n)

3T2(µ̂n)
, λ̂n =

3T 2
2 (µ̂n)

T4(µ̂n)
. (4.20)

Example 4.3 We consider the same SDE as in the above Example 4.2, but zθ
t is a

two-sided gamma process with θ = (α, β), where α is the shape parameter and β is the

scale parameter, that is, the Lévy measure of the form fθ(z) = 2−1αe−β|z||z|−1:

dXt = −µXt dt+
√
σ dwt + dz

(α,β)
t .

This is the case where infinitely many jumps occur in any finite time interval since∫
�k

fθ(z) dz = ∞.

Again, we suppose that either α0 or β0 is known. The estimators for (µ, σ) are the

same as in Example 4.2 (4.17). The estimating functions for (α, β) are also the same

as in Example 4.2, but
∫
�k z

2fθ(z) dz = αβ−2. Therefore

α̂(0)
n = β2

0T2(µ̂n), β̂(0)
n =

√
α0

T2(µ̂n)
. (4.21)
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The conditions for hρ
n and ρ′ in Theorem 4.2 are satisfies if nh4ρ

n (log hn)2 → 0. For

example, if hn = n−δ and nh1+ν
n → 0, then the last condition is satisfied for δ ∈

((1+ν)−1∨ (4ρ)−1, 1) and any ρ′ with ρ < ρ′. Notice that
∫
z4fθ(z) dz = 6αβ−4. When

we estimate (α, β) jointly, we obtain the following estimators by adding (4.19) to the

estimating functions in Example 4.2:

α̂n =
6T 2

2 (µ̂n)

T4(µ̂n)
, β̂n =

√
6T2(µ̂n)

T4(µ̂n)
. (4.22)

Now, let us show some simulation results for the above examples. In order to simu-

late the discrete sampling from the continuous path, we picked up the each observation

every 100 sample points that were generated by the Euler-Maruyama discretization

scheme in each hn-interval. Each experiment was repeated 3000 times and the es-

timators were averaged out through those experiments. The number of simulated

observations n is 500, 1000, or 3000.

First, we consider the model in Example 4.2 with the true values (µ0, λ0, ν0, σ0) =

(0.1, 0.3, 1.0, 0.05). A sample path of this model is shown in Fig. 4.1. Intuitively

speaking, this model may be comparatively easy to judge whether a jump occurred

or did not. Because, if a jump occurred then it should be large compared with the

increments by diffusions only. However, we can obtain only a few samples to estimate

the jump part since the intensity λ0 is small, so it may not be so good for accuracy of

estimation.

Below, we show the result of the case where we use (4.17) and (4.18) as the esti-

mators. When we used (4.20) instead of (4.18), the result sometimes showed a bad

performance because of a large variance by using the higher order moment T 2
2 and

T4. We denote by Jn the mean of
∑n

i=1 1{|∆iXn|>hρ
n} in 3000 experiments. This is the

mean of the number of samples which is used for estimating the parameters of the

jump part. Moreover, we choose hn = n−0.6 and ρ = 0.49, which satisfy the desired

conditions nhn → ∞ and nh4ρ
n → 0.

The result of this simulation is shown in Tab. 4.1. The mean of the number of

jumps are expected as nhnλ0, so Jn should be fewer than nhnλ0 on average since small

jumps are cut. However, it seems that the filter misunderstood a few large increments

by the diffusion part for the true jumps in this example. On the other hand, the

parameters in continuous part are estimated relatively good. A few misunderstandings

as above do not influence on estimating the parameters in this part.

Second, we consider the same model as above but the parameters are different. We

choose the true values as (µ0, λ0, ν0, σ0) = (0.1, 5.0, 0.25, 0.2). It may be more difficult
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to judge between the increments by Brownian shocks and the real discontinuity of the

path than the preceding example, however the samples to estimate the jump part can

be obtained more than the preceding one since λ0 is large. The sample path is shown

in Fig. 4.2. We choose the same hn and ρ as the preceding one. The result is in Tab.

4.2. In this simulation, the number of jumps is overestimated much more than the

previous one, so the diffusion parameter σ is underestimated. To avoid such a trouble,

we need to choose L for a threshold Lhρ
n appropriately. Just for your information, we

will show the result with L = 1.5 in the last example. The result is shown in Tab. 4.3.

The estimation of σ, λ and ν are improved although the parameters in the jump part

are still overestimated. This may be because the number of samples whose mean is Jn

is too small to estimate by the method of moment.

The performance can be often improved for an appropriate L, and it can be some-

times terribly bad for an inappropriate L. However, as described in Remark 4.1, we

can not easily determine the optimal coefficient L. The selection problem of L (or ρ),

or more generally, the one of the better filter is important in practice.

Finally, we consider the model in Example 4.3 with the true values (µ0, σ0, α0, β0) =

(0.3, 0.2, 0.5, 1.8). A sample path of this model is shown in Fig. 4.3.

For the simulation, we need the condition nh4ρ
n (log hn)2 → 0, so we choose hn =

n−0.6 and ρ = 0.48. We again assume that α0 is known to estimate β, or β0 is known

to estimate α, so we used the estimator (4.21) to estimate the jump part instead of

(4.22). The result is shown in Tab. 4.4. As we have already described, such a model

has the infinitely many jumps in any finite time interval and it has been difficult to

estimate the parameters from only discrete data. Therefore, our method is worth using

although it is not asymptotically efficient.

n (nhn) 500 (12.01) 1000 (15.85) 3000 (24.60) True value

µ̂n 0.1318 0.1190 0.1110 0.1

σ̂n 0.0501 0.0500 0.0499 0.05

λ̂
(0)
n 0.4398 0.4070 0.3748 0.3

ν̂
(0)
n 1.4661 1.3560 1.2411 1.0

Jn 4.02 5.17 7.71 —–

Tab. 4.1: Result for Example 4.2. (µ, σ, λ) or (µ, σ, ν) are estimated jointly.
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n (nhn) 500 (12.01) 1000 (15.85) 3000 (24.60) True value

µ̂n 0.1004 0.0995 0.0999 0.1

σ̂n 0.1790 0.1774 0.1770 0.2

λ̂
(0)
n 7.5168 6.9917 6.2219 5.0

ν̂
(0)
n 0.3758 0.3495 0.3114 0.25

Jn 52.6 79.92 158.1 —–

Tab. 4.2: Result for different values of the parameters with Tab 4.1. (µ, σ, λ) or (µ, σ, ν)

are estimated jointly.

n (nhn) 500 (12.01) 1000 (15.85) 3000 (24.60) True value

µ̂n 0.1115 0.1112 0.1025 0.1

σ̂n 0.2230 0.2122 0.2041 0.2

λ̂
(0)
n 7.3301 6.8551 6.1509 5.0

ν̂
(0)
n 0.3695 0.3392 0.3054 0.25

Jn 37.4 54.4 95.5 —–

Tab. 4.3: Result for L = 1.5 with the same parameters as in Tab 4.2. (µ, σ, λ) or

(µ, σ, ν) are estimated jointly.

n (nhn) 500 (12.01) 1000 (15.85) 3000 (24.60) True value

µ̂n 0.3509 0.3302 0.3125 0.3

σ̂n 0.1800 0.1805 0.1921 0.2

α̂
(0)
n 0.5579 0.5558 0.5574 0.5

β̂
(0)
n 2.0863 1.9759 1.9001 1.8

Jn 13.8 24.0 58.1 —–

Tab. 4.4: Result for Example 4.3. (µ, σ, α) or (µ, σ, β) are estimated jointly.
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Fig. 4.1: A sample path of X: dXt = −µ0Xt dt +
√
σ0 dwt + dz

(λ0,ν0)
t , where z

is a compound Poisson process with fθ(z) = λ√
2πν

exp
(
− z2

2ν

)
and (µ0, λ0, ν0, σ0) =

(0.1, 0.3, 1.0, 0.05).
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-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10

Path of X

Fig. 4.2: A sample path of X: dXt = −µ0Xt dt +
√
σ0 dwt + dz

(λ0,ν0)
t , where z

is a compound Poisson process with fθ(z) = λ√
2πν

exp
(
− z2

2ν

)
and (µ0, λ0, ν0, σ0) =

(0.5, 4.0, 0.25, 0.2).
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Fig. 4.3: A sample path of X: dXt = −µ0Xt dt +
√
σ0 dwt + dz

(α0,β0)
t , where z is a

gamma process with fθ(z) = 2−1αe−β|z||z|−1 and (µ0, σ0, α0, β0) = (0.1, 0.2, 0.5, 1.8).

4.5 Moment estimates in infinite activity case

In this section, we shall give some lemmas and their proofs which are needed to show

the asymptotic properties of estimators. First, we shall prepare some notations.

Let Ln,α and Lα be the following operators: for g ∈ C2,

Ln,αg(x) =

d∑
i=1

a(i)
n (x, θ)

∂g

∂xi
(x) +

1

2

d∑
j,k=1

β(j,k)(x, σ)
∂2g

∂xj∂xk
(x)

+

∫
|z|≤εn

{
g(x+ c(x, z, θ)) − g(x) −

d∑
i=1

c(i)(x, z, θ)
∂g

∂xi
(x)

}
fθ(z) dz,

and

Lαg(x) =
d∑

i=1

a(i)(x, θ)
∂g

∂xi
(x) +

1

2

d∑
j,k=1

β(j,k)(x, σ)
∂2g

∂xj∂xk
(x)

+

∫ {
g(x+ c(x, z, θ)) − g(x) −

d∑
i=1

c(i)(x, z, θ)
∂g

∂xi

(x)

}
fθ(z) dz.

Notice that Ln,α is the infinitesimal generator of dXt = an(Xtθ) dt + b(Xt, σ) dwt +

dBn(t), and Lα is the one of SDE (4.1).
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Lemma 4.5 Suppose Conditions A1, A4, A5 and (4.2). Then it follows for any integer

k ≥ 2 and t ∈ [tni−1, t
n
i ) that

En
i−1

[
|Xt −Xtni−1

|k
]
≤ Ck|t− tni−1|(1 + |Xtni−1

|)k. (4.23)

Let g be a function defined on R
d ×Ξ and is of polynomial growth in x uniformly in α

then

E [|g(Xt, α)|] ≤ C(1 + |Xtni−1
|)C . (4.24)

Proof． The result follows by the same argument as in Lemma 3.5. �

Lemma 4.6 Suppose Conditions A1, A4,A5 and (4.2). Then

En
i−1

[
X̄

(l1)
i,n

]
= hn

∫
|z|>εn

c
(l1)
i−1(z)f(z) dz +R

(
α, h2

n, Xtni−1

)
, (4.25)

En
i−1

[
X̄

(l1)
i,n X̄

(l2)
i,n

]
= hn

(
β

(l1,l2)
i−1 +

∫
�k

c
(l1)
i−1c

(l2)
i−1(z)f(z) dz

)

+R
(
α, h2

n, Xtni−1

)
, (4.26)

En
i−1

[
3∏

j=1

X̄
(lj)
i,n

]
= hn

∫
�k

{
3∏

j=1

c
(lj)
i−1(z)

}
f(z) dz +R

(
α, h2

n, Xtni−1

)
, (4.27)

En
i−1

[
4∏

j=1

X̄
(lj)
i,n

]
= hn

∫
�k

{
4∏

j=1

c
(lj)
i−1(z)

}
f(z) dz +R

(
α, h2

n, Xtni−1

)
. (4.28)

Proof． Let g
(l1,... ,lp)
p (y, x) =

∏p
j=1(y − x)(lj) where lj = 1, 2, . . . , d. According to

Proposition 2.6 and Lemma 4.5 (4.24),

En
i−1

[
X̄

(l1)
i,n

]
= En

i−1

[
g

(l1)
1 (Xtni

, Xtni−1
)
]
− hna

(l1)
n,i−1

= hnLα0g
(l1)
1 (y,Xtni−1

)
∣∣
y=Xtn

i−1

− hna
(l1)
i−1

+ hn

∫
|z|>εn

c
(l1)
i−1(z)f(z) dz +R

(
α, h2

n, Xtni−1

)
,

where Lα0g
(l1)
1 (y,Xtni−1

)
∣∣
y=Xtn

i−1

= a
(l1)
i−1. Hence

En
i−1

[
X̄

(l1)
i,n

]
= hn

∫
|z|>εn

c
(l1)
i−1(z)f(z) dz +R

(
α, h2

n, Xtni−1

)
.

The equation (4.26) and (4.27) are similarly proved as above, so we shall show (4.28)

only.

En
i−1

[
4∏

j=1

X̄
(lj)
i,n

]
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= En
i−1

[
g

(l1,... ,l4)
4 (Xtni

, Xtni−1
)
]
− hna

(l1)
n,i−1E

n
i−1

[
g

(l2,l3,l4)
3 (Xtni

, Xtni−1
)
]

− hna
(l2)
n,i−1E

n
i−1

[
g

(l1,l3,l4)
3 (Xtni

, Xtni−1
)
]
− hna

(l3)
n,i−1E

n
i−1

[
g

(l1,l2,l4)
3 (Xtni

, Xtni−1
)
]

− hna
(l4)
n,i−1E

n
i−1

[
g

(l1,l2,l3)
3 (Xtni

, Xtni−1
)
]

+R
(
α, h2

n, Xtni−1

)
= En

i−1

[
g

(l1,... ,l4)
4 (Xtni

, Xtni−1
)
]

+ h2
n

4∑
k=1

a
(lk)
n,i−1

∫
�k

{
4∏

j=1,j �=k

c(lj)(x, z)

}
fθ(z) dz +R

(
α, h2

n, Xtni−1

)
.

We used (4.27) in the last equality. Applying Proposition 2.6 and Lemma 4.5 (4.24) to

the first term, we have

En
i−1

[
g

(l1,... ,l4)
4 (Xtni

, Xtni−1
)
]

= hnLg
(l1,... ,l4)
4 (y,Xtni−1

)
∣∣
y=Xtn

i−1

+R
(
α, h2

n, Xtni−1

)
,

and it is easy to see that

Lg
(l1,... ,l4)
4 (y,Xtni−1

)
∣∣
y=Xtn

i−1

=

∫
�k

{
4∏

j=1

c
(lj)
i−1(z)

}
f(z) dz. �

By the same argument as in the above proof, we can obtain the next result.

Remark 4.3 Generally it follows for p ≥ 3 that

En
i−1

[
p∏

j=1

X̄
(lj)
i,n

]
= hn

∫
�k

{
p∏

j=1

c
(lj)
i−1(z)

}
f(z) dz +R

(
α, h2

n, Xtni−1

)
. (4.29)

Proof． Obvious. �

Lemma 4.7 Suppose Conditions A1, A4, A5 and (4.2). Then

En
i−1

[
X̄

(l1)
i,n 1{|∆iXn|≤hρ

n}
]

= R
(
α, λ

(εn)
0 h1+ρ

n , Xtni−1

)
, (4.30)

En
i−1

[
X̄

(l1)
i,n X̄

(l2)
i,n 1{|∆iXn|≤hρ

n}
]

= hn

(
β

(l1,l2)
i−1 +

∫
|z|≤εn

c
(l1)
i−1c

(l2)
i−1(z)f(z) dz

)

+R
(
α, λ

(εn)
0 h1+2ρ

n , Xtni−1

)
, (4.31)

En
i−1

[
3∏

j=1

X̄
(lj)
i,n 1{|∆iXn|≤hρ

n}
]

= hn

∫
|z|≤εn

{
3∏

j=1

c
(lj)
i−1(z)

}
f(z) dz

+R
(
α, λ

(εn)
0 h1+3ρ

n ∨ h2
n, Xtni−1

)
, (4.32)

En
i−1

[
4∏

j=1

X̄
(lj)
i,n 1{|∆iXn|≤hρ

n}
]

= hn

∫
|z|≤εn

{
4∏

j=1

c
(lj)
i−1(z)

}
f(z) dz
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+ h2
nJ

(l1,l2,l3,l4)
n (Xtni−1

, α0)

+R
(
α, λ

(εn)
0 h1+4ρ

n ∨ h3
n, Xtni−1

)
, (4.33)

where J
(l1,l2,l3,l4)
n is a polynomial growth function such that

lim
n→∞

J (l1,l2,l3,l4)
n = β(l1,l2)β(l3,l4) + β(l1,l3)β(l2,l4) + β(l1,l4)β(l2,l3).

Moreover, for p ≥ 3, we can also write that

En
i−1

[
p∏

j=1

X̄
(lj)
i,n 1{|∆iXn|≤hρ

n}
]

= hn

∫
|z|≤εn

{
p∏

j=1

c
(lj)
i−1(z)

}
f(z) dz

+R
(
α, λ

(εn)
0 h1+pρ

n ∨ h2
n, Xtni−1

)
. (4.34)

Proof． We shall show only (4.33). The proofs for others are done similarly.

Let Mi,n,p(θ) =
∏p

j=1 X̄
(lj)
i,n .

En
i−1

[
Mi,n,41{|∆iXn|≤hρ

n}
]

= En
i−1

[
Mi,n,41Cn

i,0(εn)

]
+ En

i−1

[
Mi,n,41Cn

i,1(εn)

]
= En

i−1

[
Mi,n,41Cn

i,0(εn)

]
+R

(
α, λ(εn)h1+4ρ

n , Xtni−1

)

since |X̄(lj)
i,n |1Cn

i,1(εn) ≤ hρ
n1Cn

i,1(εn) and P n
i−1{Cn

i,1(εn)} = R
(
α, λ(εn)hn, Xtni−1

)
. On the

other hand, we shall notice that the diffusion with jumps X follows the following

stochastic differential equation

dXt = an(Xt) dt+ b(Xt) dwt + dBn(t), (4.35)

on the set {Jn
i (εn) = 0}. Therefore, we can replace X in En

i−1

[
Mi,n,41{Jn

i (εn)=0}
]

with

Y which follows the differential equation (4.35) and which is independent of Jn
i (εn),

that is,

En
i−1

[
Mi,n,41Cn

i,0(εn)

]
= En

i−1

[
Mi,n,41{Jn

i (εn)=0}
]− En

i−1

[
Mi,n,41Dn

i,0(εn)

]

= En
i−1

[
4∏

j=1

Ȳ
(lj)
i,n

]
P n

i−1{Jn
i (εn) = 0} +R

(
α, hq

n, Xtni−1

)

for any q ≥ 1. The last equality is obtained by Lemma 4.4. We can calculate the

expectation En
i−1

[∏4
j=1 Ȳ

(lj)
i,n

]
by applying Proposition 2.6 and Lemma 4.5 (4.24) with

Ln,α to

En
i−1

[
g

(l1,... ,l4)
4 (Ytni

, Ytni−1
)
]
,
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that is, by the same argument as in Lemma 4.6, we have

En
i−1

[
4∏

j=1

Ȳ
(lj)
i,n

]
= hn

∫
|z|≤εn

{
p∏

j=1

c
(lj)
i−1(z)

}
f(z) dz

+ h2
nJ

(l1,l2,l3,l4)
n (Xtni−1

, α0) +R
(
α, h3

n, Xtni−1

)
,

where

J (l1,l2,l3,l4)
n (x, α) =

4∑
k=1

a
(lk)
n,i−1(θ)

∫
|z|≤εn

{
4∏

j=1,j �=k

c(lj)(x, z, θ)

}
fθ(z) dz

+
1

2
L2

n,αg
(l1,... ,l4)
4 (y, x)

∣∣
y=x

,

and it is easy to see by simple computation that

lim
n→∞

J (l1,l2,l3,l4)
n (x, α0) =

1

2
lim

n→∞
L2

n,α0
g

(l1,... ,l4)
4 (y, x)

∣∣
y=x

= β(l1,l2)β(l3,l4) + β(l1,l3)β(l2,l4) + β(l1,l4)β(l2,l3)

since
∫
|z|≤εn

gn(x, z)f(z) dz → 0 for gn → g which is integrable with respect to the

measure f(z) dz. �

Corollary 4.2 For p ≥ 1,

En
i−1

[
p∏

j=1

X̄
(lj)
i,n 1{|∆iXn|>hρ

n}
]

= hn

∫
|z|>εn

{
p∏

j=1

c
(lj)
i−1(z)

}
f(z) dz

+R
(
α, λ

(εn)
0 h1+pρ

n ∨ h2
n, Xtni−1

)
. (4.36)

Proof． These are immediate consequences from Lemmas 4.6 and 4.7. �

4.6 Limit theorems

Proposition 4.1 Assume Conditions A1, A2, and that λ
(εn)
0 hn → 0 as n → ∞. We

denote by g(x, α) : R
d × Ξ → R a function which satisfies the following conditions:

|g(n)(x, α)| ≤ L(x, α), |∂αg
(n)|, |∂xg

(n)| ≤ C(1 + |x|)C ,

where L(x, α) is a π-integrable function for all α, and there exists a function g(x, α)

such that

g(n)(x, α) → g(x, α) π-a.s.
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as n→ ∞. Then g(x, α) is a π-integrable for all α and

sup
α∈Ξ

∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α) −

∫
g(x, α) dπ(x)

∣∣∣∣∣ P−→ 0, (4.37)

sup
α∈Ξ

∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α)1{|∆iXn|≤hρ

n} −
∫
g(x, α) dπ(x)

∣∣∣∣∣ P−→ 0. (4.38)

Proof． The π-integrability of g(x, α) is the immediate result from the uniform in-

tegrability of {g(n)(x, α)}n.

Let us show the convergences for fixed α. On (4.37),

P

{∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α) −

∫
g(x, α) π(dx)

∣∣∣∣∣ > ε

}

≤ P

{∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α) − 1

nhn

∫ nhn

0

g(n)(Xs, α) ds

∣∣∣∣∣ > ε

3

}

+ P

{∣∣∣∣ 1

nhn

∫ nhn

0

g(n)(Xs, α) ds− 1

nhn

∫ nhn

0

g(Xs, α) ds

∣∣∣∣ > ε

3

}

+ P

{∣∣∣∣ 1

nhn

∫ nhn

0

g(Xs, α) ds−
∫
g(x, α)π(dx)

∣∣∣∣ > ε

3

}
.

The third term converges to zero by Assumption A2. Let us call the first and second

terms P 1
n and P 2

n respectively, then

P 1
n ≤ 3

ε
E

[∣∣∣∣∣ 1n
n∑

i=1

g
(n)
i−1(α) − 1

nhn

∫ nhn

0

g(n)(Xs, α)ds

∣∣∣∣∣
]

≤ 3

ε
E

[
1

nhn

n∑
i=1

∫ tni

tni−1

|g(n)(Xs, α) − g
(n)
i−1(α)| ds

]
.

Applying Taylor’s formula and Schwarz’s inequality, we have

P 1
n ≤ 3

nhnε

n∑
i=1

∫ tni

tni−1

(
E
[
|Xs −Xtni−1

|2
]) 1

2

×
(
E

[(∫ 1

0

∂xg
(n)(Xs + u(Xs −Xtni−1

)) du

)2
])1

2

ds.

Lemma 4.5 yields that

P 1
n ≤ 3

nhnε

n∑
i=1

∫ tni

tni−1

(
E
[
C|s− tni−1|(1 + |Xtni−1

|)C
]) 1

2
(
E
[
(1 + |Xtni−1

|)C
]) 1

2
ds
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≤ 1

nhnε

n∑
i=1

(∫ tni

tni−1

|s− tni−1|1/2 ds

)

≤ O(
√
hn)

and

P 2
n ≤ 3

εnhn

∫ nhn

0

E|g(n)(Xt, α) − g(Xt, α)| dt

=
3

ε

∫
|g(n)(x, α) − g(x, α)| dπ.

This converges to zero by Lebesgue’s convergence theorem.

The convergence (4.38) is immediately deduced from the fact that

1

n

n∑
i=1

g
(n)
i−1(α)

(
1 − 1{|∆iXn|≤hρ

n}
)

=
1

n

n∑
i=1

g
(n)
i−1(α)1{|∆iXn|>hρ

n}

= op

(√
λ

(εn)
0 hn

)
.

Finally we have to show the uniformity of the convergence in α. We will only

show (4.37). The one for (4.38) can be proved similarly. Let sn(α) =
1

n

n∑
i=1

g
(n)
i−1(α),

and we regard this as a random element taking values in (C(Ξ), ‖ · ‖∞) and we will

check the tightness of this sequence; see Remark B.1 in Appendix B. Since we already

showed the convergence of the marginal distribution of sn(α), the tightness is implied

by sup
n
E

[
sup

α
|∂αsn(α)|

]
<∞; see Corollary B.1, and it is clear from Assumption A2.

�

Proposition 4.2 Assume Conditions A1, A2, A4 and A5, and that λ
(εn)
0 h2ρ

n → 0 and

λ
(εn)
0 h4ρ−1

n = O(1) as n → ∞. We denote by g(x, α) : R
d × Ξ → R a function which

satisfies the following conditions:

|g(n)(x, α)| ≤ L(x, α), |∂αg
(n)|, |∂xg

(n)| ≤ C(1 + |x|)C ,

where L2(x, α) is a π-integrable function for all α, and there exists a function g(x, α)

such that

g(n)(x, α) → g(x, α) π-a.s.

as n→ ∞. Then g(x, α) is a π-integrable for all α and

1

nhn

n∑
i=1

g
(n)
i−1(α)X̄

(l1)
i,n X̄

(l2)
i,n 1{|∆iXn|≤hρ

n}
P−→

∫
g(x, α)β(l1,l2)(x)dπ (4.39)

uniformly in α.
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Proof． The π-integrability of g is shown similarly as in the proof of the preceding

Proposition.

On the convergence of (4.39) for fixed α, we set

ξn
i (α) :=

1

nhn

gi−1(α)X̄
(l1)
i,n X̄

(l2)
i,n 1{|∆iXn|≤hρ

n}.

We show that

An =
n∑

i=1

En
i−1 [ξn

i (α)]
P−→

∫
g(x, α)β(l1,l2)(x) dπ, Bn =

n∑
i=1

En
i−1

[
(ξn

i (α))2
] P−→ 0.

Applying Lemma 4.7 and Proposition 4.1 to An, we have

An =
1

n

n∑
i=1

g
(n)
i−1

(
β

(l1,l2)
i−1 +

∫
|z|≤εn

c
(l1)
i−1c

(l2)
i−1

)
(z) f(z) dz +R

(
α, λ(εn)hρ

n, Xtni−1

)
P−→

∫
g(x, α)β(l1,l2)(x)dπ

since
∫
|z|≤εn

c
(l1)
i−1c

(l2)
i−1(z) f(z) dz → 0 according to Assumption A5. Similarly, applying

Lemma 4.7 and Proposition 4.1 again to Bn, we see that

Bn =
1

nhn

· 1

n

n∑
i=1

(
g

(n)
i−1

)2
∫
|z|≤εn

{
2∏

j=1

(
c
(lj)
i−1

)2

(z)

}
f(z) dz

+R
(
α, λ(εn)h2ρ

n , Xtni−1

)
P−→ 0.

This ends the proof of (4.39) for fixed α.

The uniformity in α of the convergence (4.37) is shown by checking the tightness

criterion supnE [supα |∂α

∑n
i=1 ξ

n
i (α)|] <∞.

By using the equality (4.33),

E

[
sup

α

∣∣∣∣∣∂α

n∑
i=1

ξn
i (α)

∣∣∣∣∣
]

≤ 1

nhn

n∑
i=1

{
E

[
sup

α
|∂αgi−1(α)|2

]}1/2 {
E
[
|X̄(l1)

i,n X̄
(l2)
i,n |21{|∆iXn|≤hρ

n}
]}1/2

.

Here, using Corollary 4.1, we have

E
[
|X̄(l1)

i,n X̄
(l2)
i,n |21{|∆iXn|≤hρ

n}
]

= E
[
|X̄(l1)

i,n X̄
(l2)
i,n |21{|∆iXn|≤hρ

n,Jn
i (εn)=0}

]
+ E

[
|X̄(l1)

i,n X̄
(l2)
i,n |21{|∆iXn|≤hρ

n,Jn
i (εn)≥1}

]
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= O(h2
n) +O

(
λ

(εn)
0 h4ρ+1

n

)
.

Hence we find that E [supα |∂α

∑n
i=1 ξ

n
i (α)|] = O(1) as n → ∞. This completes the

proof. �

Proposition 4.3 Assume Conditions A1, A2, A4 and A5, and that λ
(εn)
0 hρ

n → 0 as

n → ∞. We denote by g(x, α) : R
d × Ξ → R a function which satisfies the following

conditions:

|g(n)(x, α)| ≤ L(x, α), |∂αg
(n)| + |∂xg

(n)| ≤ C(1 + |x|)C ,

where C is a constant, L2(x, α) is a π-integrable function for all α, and there exists a

function g(x, α) such that

g(n)(x, α) → g(x, α) π-a.s.

as n→ ∞. Then g(x, α) is a π-integrable for all α and, for p ≥ 1,

1

nhn

n∑
i=1

g
(n)
i−1(α)

p∏
j=1

X̄
(lj)
i,n 1{|∆iXn|>hρ

n}

P−→
∫∫

g(x, α)

p∏
j=1

c(lj)(x, z)f(z) dzdπ, (4.40)

uniformly in α.

Proof． We set

ηn
i (α) :=

1

nhn

gi−1(α)

p∏
j=1

X̄
(lj)
i,n 1{|∆iXn|>hρ

n}

for p ≥ 1. We shall also show the following.

A′
n =

n∑
i=1

En
i−1 [ηn

i (α)]
P−→

∫∫
g(x, α)

p∏
j=1

c(lj)(x, z)f(z) dzdπ,

B′
n =

n∑
i=1

En
i−1

[
(ηn

i (α))2
] P−→ 0.

Applying Corollary 4.2 and Proposition 4.1 to A′
n, we see that

A′
n =

1

n

n∑
i=1

g
(n)
i−1

∫
|z|>εn

p∏
j=1

c
(lj)
i−1(z) f(z) dz +R

(
α, λ(εn)hpρ

n , Xtni−1

)
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P−→
∫∫

g(x, α)

p∏
j=1

c(lj)(x, z)f(z) dzdπ,

and, similarly,

B′
n =

1

nhn

· 1

n

n∑
i=1

(
g

(n)
i−1

)2
∫
|z|>εn

{
p∏

j=1

(
c
(lj)
i−1

)2

(z)

}
f(z) dz

+R
(
α, λ(εn)h2pρ

n , Xtni−1

)
P−→ 0.

This is the proof of the convergence (4.2) for fixed α.

Let K(x, y) = supα |∂ag(x)|
∏p

j=1 |y(lj)− − hna
(lj)
n (x)|. Let us show the following

tightness criterion:

sup
n

1

nhn

n∑
i=1

E
[
K(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n}
]
<∞.

For fixed i, notice the decomposition

E

[
K(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n} − hn

∫∫
|z|>εn

K(x, c(x, z))f(z) dzdπ

]
=

5∑
k=1

Ik,

where

I1 = E
[
K(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n} −K(Xtni−1
,∆iX

n)1{Jn
i (εn)=1}

]
,

I2 = E
[
K(Xtni−1

,∆iX
n)1{Jn

i (εn)=1} −K(Xtni−1
, Xτn

i (εn))1{Jn
i (εn)=1}

]
,

I3 = E

[
K(Xtni−1

, Xτn
i (εn))1{Jn

i (εn)=1} −
∫ tni

tni−1

∫
K(Xtni−1

, c(Xtni−1
, z))p(εn)(dz, ds)

]
,

I4 = E

[∫ tni

tni−1

∫
K(Xtni−1

, c(Xtni−1
, z))(p(εn) − q(εn))(dz, ds)

]
,

I5 = E

[∫ tni

tni−1

∫
K(Xtni−1

, c(Xtni−1
, z))q(εn)(dz, ds)

− hn

∫∫
|z|>εn

K(x, c(x, z))f(z) dzdπ

]
.

See Lemma 4.1 and 4.4 on the definitions of τn
i (εn) and Jn

i (εn).

On I2 and I3 , using Corollary 4.1 (4.9) and taking the same argument as in Propo-

sition 3.4, we can obtain that I2 + I3 = O
(
λ

(εn)
0 h

3/2
n

)
. Moreover, it is easy to see that
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I4 + I5 = 0. Let us estimate I1:

I1 = E
[
K(Xtni−1

,∆iX
n)
(
1Dn

i,0(εn) + 1{|∆iXn|≤hρ
n,Jn

i (εn)=1} + 1{|∆iXn|>hρ
n,Jn

i (εn)≥2}
)]
.

Noticing that

E
[
K(Xtni−1

,∆iX
n)1{|∆iXn|≤hρ

n,Jn
i (εn)=1}

]

≤ E

[
sup

α
∂a|gi−1(α)|

p∏
j=1

(hρ
n + hn|an,i−1|)1{Jn

i (εn)=1}

]

= E

[
sup

α
∂a|gi−1(α)|

p∏
j=1

(hρ
n + hn|an,i−1|)P n

i−1{Jn
i (εn) = 1}

]

= O(λ
(εn)
0 hpρ+1

n ),

and that P n
i−1{Jn

i (εn) ≥ 2} = Op

(
(λ

(εn)
0 hn)2

)
and Hölder’s inequality, we see, for

arbitrary 0 < δ < 1,

I1 = O(hq
n) +O(λ

(εn)
0 hpρ+1

n ) +O
(
(λ

(εn)
0 hn)2δ

)
= O(λ(εn)hpρ+1

n ) +O

((
λ

(εn)
0 h1−(2δ)−1

n

)2δ
)

→ 0

if we take δ as 2−1(1 − ρ)−1 ≤ δ < 1. Therefore,

1

nhn

n∑
i=1

E
[
K(Xtni−1

,∆iX
n)1{|∆iXn|>hρ

n}
]

−→
∫∫

K(x, c(x, z))f(z) dzdπ <∞.

This completes the proof. �

Proposition 4.4 Assume Conditions A1, A2, A4 and A5, and that λ
(εn)
0 h2ρ

n → 0 as

n→ ∞. Then

sup
α∈Ξ

∣∣∣∣∣ 1

nhn

n∑
i=1

g
(n)
i−1(α)X̄

(l)
i,n1{|∆iXn|≤hρ

n}
∣∣∣∣∣ P−→ 0, (4.41)

where l = 1, 2, . . . , d, and a function g(n)(x, α) is given in Proposition 4.3.

Proof． Set

ζn
i (α) = ζ̄n

i (α) +
1

nhn
gi−1(α)X̄

(l)
i,n1{|∆Xn

i |>hρ
n},

where ζ̄n
i (α) =

1

nhn
gi−1(α)X̄

(l)
i,n. The convergence of

∑n
i=1 ζ

n
i (α) for each α is similar

to the proof of Proposition 4.2.
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Let us show the tightness of {∑n
i=1 ζ

n
i (α)}n. The tightness of the second term in

the last right-hand side has been proved in Proposition 4.3. Therefore, we only show

the tightness of
{∑n

i=1 ζ̄
n
i (α)

}
n∈� . The proof is similar to the one of Proposition 3.3;

see Theorem B.8 in Appendix B. We show, for any N ∈ N and a constant H > 0, that

E

⎡
⎣( n∑

i=1

ζ̄n
i (α)

)2N
⎤
⎦ ≤ H, (4.42)

E

⎡
⎣( n∑

i=1

ζ̄n
i (α1) −

n∑
i=1

ζ̄n
i (α2)

)2N
⎤
⎦ ≤ H|α1 − α2|2N . (4.43)

We only show the inequality (4.42). The inequality (4.43) is similarly proved．
Setting H(s, α) =

∑n
i=1 gi−1(α)1[tni−1,tni )(s), we have

n∑
i=1

ζ̄n
i (α) =

1

nhn

{∫ nhn

0

H(s, α)a(l)(Xs) ds+

r∑
j=1

∫ nhn

0

H(s, α)b(l,j)(Xs) dW
(j)
s

+

∫ nhn

0

∫
H(s, α)c(l)(Xs−, z) r(ds, dz) −

n∑
i=1

gi−1a
(l)
n,i−1hn

}
.

Therefore,

E

⎡
⎣( n∑

i=1

ζ̄n
i (α)

)2N
⎤
⎦ ≤ CN

{
E

[(
1

nhn

∫ nhn

0

H(s, α)a(l)(Xs) ds

)2N
]

+
r∑

j=1

E

[(
1

nhn

∫ nhn

0

H(s, α)b(l,j)(Xs) dW
(j)
s

)2N
]

+ E

[(
1

nhn

∫ nhn

0

∫
H(s, α)c(l)(Xs−, z) r(ds, dz)

)2N
]

+ E

⎡
⎣(1

n

n∑
i=1

gi−1a
(l)
n,i−1

)2N
⎤
⎦}.

Applying Jensen’s inequality and Burkholder-Davis-Gundy’s inequality, we see that

E

⎡
⎣( n∑

i=1

ζ̄n
i (α)

)2N
⎤
⎦ ≤ CN

{
1

nhn

∫ nhn

0

E[H2N(s, α)(a(l)(Xs))
2N ] ds

+
1

(nhn)N+1

r∑
j=1

∫ nhn

0

E[H2N(s, α)(b(l,j)(Xs))
2N ] ds
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+
1

(nhn)N+1

∫ nhn

0

∫
E[H2N(s, α)(c(l)(Xs−, z))2N ] q(ds, dz)

+ E

⎡
⎣( 1

n

n∑
i=1

gi−1a
(l)
n,i−1

)2N
⎤
⎦}.

One can see that these all are bounded because of Condition A2． �

4.7 Proofs of the main theorems

4.7.1 Proof of consistency

We show the proof of Theorem 4.1.

We set Mn =

(
nhnIm1 0

0 nIm2

)
, where Im is the m-dimensional identity matrix,

and we set Ψn(α) = M−1
n ψn(α). Then, there exists a function Ψ(α) such that

sup
α

|Ψn(α) − Ψ(α)| P−→ 0,

since, by Proposition 4.1 - 4.4, we can obtain the following convergence under Condi-

tions A1 - A6 and λ
(εn)
0 hρ

n → 0 as n→ 0:

1

nhn

n∑
i=1

{
ψ

(1)
i,n,q + ψ

(2)
i,n,q

}
(α)

P−→
∫ {

HQq(x, c(x, z, θ0))fθ0(z) −HQq(x, c
(lj)(x, z, θ))fθ(z)

}
dz

+

d∑
k,l=1

∫
�d

∂θq ã
(k)(x, θ)

(
β−1(x, σ)

)(k,l) {
ã(l)(x, θ0) − ã(l)(x, θ)

}
dπ(x)

=

∫
Uq(x, θ, σ) dπ(x),

and

1

n

n∑
i=1

ψ
(3)
i,n,r(α)

P−→
∫
�d

{
tr
[
∂σrβ

−1(x, σ)β(x, σ0)
]
+
∂σrdetβ(x, σ)

detβ(x, σ)

}
dπ(x).

These convergences are uniform in α and Ψ(α) is this limits. Therefore, the similar

argument as in Section 3.5.1 yields the consistency of α̂n to α0. We omit the details.
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4.7.2 Proof of asymptotic normality

According to Taylor’s formula and the definition of α̂n,

∫ 1

0

∂αψn (α0 + u(α̂n − α)) du (α̂n − α0) = −ψn(α0).

By multiplying M
−1/2
n from the left in the both sides, we obtain that

∫ 1

0

Cn (α0 + u(α̂n − α0)) du ·M−1/2
n (α̂n − α0) = −Ln(α0), (4.44)

where

Cn(α) =

(
1

nhn
∂θψ

(1)
n (α) 1

n
√

hn
∂σψ

(1)
n (α)

1
n
√

hn
∂θψ

(2)
n (α) 1

n
∂σψ

(2)
n (α)

)
, Ln(α) =

(
1√
nhn

ψ
(1)
n (α)

1√
n
ψ

(2)
n (α)

)
.

If we notice the relation (4.44), the following two lemmas easily deduce the desired

results.

Lemma 4.8 As λ
(εn)
0 hρ

n → 0 and λ
(εn)
0 h4ρ−1 → 0, we have

(i) Cn(α0)
P−→ B, where B =

(
B(1,1) B(1,2)

B(2,1) B(2,2)

)
, B(1,1) = −K ′

1, B
(2,2) = 2K2 and

B(1,2) = B(2,1) = 0.

(ii) sup
|α|≤δn

|Cn(α+ α0) − Cn(α0)| P−→ 0 for any positive sequences δn → 0 as n→ ∞.

Lemma 4.9 Assume that λ
(εn)
0 hρ

n → 0 and n(λ
(εn)
0 )2h4ρ

n → 0. Moreover, we take

ρ′(> ρ) so that

∫
|z|≤εn

|z|2fθ0(z) dz = o
(
n−1/2

)
. Then

Ln(α0)
d−→ Nm(0, B̄),

where B̄ =

(
B̄(1,1) B̄(1,2)

B̄(2,1) B̄(2,2)

)
and B̄(1,1) = K ′′

1 , B̄
(2,2) = 4K2 and B̄(1,2) = B̄(2,1) = 0.

We shall prove above lemmas in the subsections below. This ends the proof. �
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4.7.3 Proof of Lemma 4.8

By simple computation, we have the following first derivatives of ψn: for p = 1, . . . , m1,

s = 1, . . . , m2,

∂θpψ
(1)
i,n,q(α) =

Qq∑
Q′=2

∂θpG
(Q′)
n,i−1(α)

Q′∏
j=1

X̄
(lj)
i,n 1{|∆iXn|>hρ

n}

+

Qq∑
Q′=2

G
(Q′)
n,i−1(α)∂θp

{
Q′∏

j=1

X̄
(lj)
i,n

}
1{|∆iXn|>hρ

n}

− hn

Qq∑
Q′=2

∂θp

∫
�k

Q′∏
j=1

c
(lj)
i−1(z, θ)fθ(z) dz,

∂θpψ
(2)
i,n,q(α) =

d∑
k,l=1

∂θp∂θqa
(k)
n,i−1(θ)

(
β−1

i−1

)(k,l)
(σ)X̄

(l)
i,n1{|∆iXn|≤hρ

n}

− hn

d∑
k,l=1

∂θpa
(k)
n,i−1(θ)

(
β−1

i−1

)(k,l)
(σ)∂θqa

(l)
n,i−11{|∆iXn|≤hρ

n},

∂σrψ
(1)
i,n,q(α) =

Qq∑
Q′=2

(
∂σrG

(Q′)
n,i−1(α)

){ Q′∏
j=1

X̄
(lj)
i,n

}
1{|∆iXn|>hρ

n}

− hn

Qq∑
Q′=2

(
∂σrG

(Q′)
n,i−1(α)

)∫
�k

{
Q′∏
j=1

c
(lj)
i−1(z, θ)

}
fθ(z) dz,

∂σrψ
(2)
i,n,q(α) =

n∑
k,l=1

∂θqan,i−1(θ)
(
∂σrβ

−1
i−1

)(k,l)
(σ)X̄

(l)
i,n1{|∆iXn|≤hρ

n},

∂θpψ
(3)
i,n,r(α) = ∂σrψ

(2)
i,n,q(α),

∂σsψ
(3)
i,n,r(α) =

d∑
k,l=1

1

hn
∂σs∂σr

(
β−1

i−1

)(k,l)
(σ)X̄

(k)
i,n X̄

(l)
i,n1{|∆iXn|≤hρ

n}

+
d∑

k,l=1

+∂σs∂σr log detβi−11{|∆iXn|≤hρ
n}.

Applying Proposition 4.1 and 4.3, we easily obtain that

lim
n→∞

1

nhn

n∑
i=1

∂θpψ
(1)
i,n,q(α)

= lim
n→∞

1

nhn

n∑
i=1

Qq∑
Q′=2

∂θpG
(Q′)
n,i−1(α)

Q′∏
j=1

X̄
(lj)
i,n 1{|∆iXn|>hρ

n}
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+ lim
n→∞

1

nhn

n∑
i=1

Qq∑
Q′=2

G
(Q′)
n,i−1(α)∂θp

{
Q′∏

j=1

X̄
(lj)
i,n

}
1{|∆iXn|>hρ

n}

− lim
n→∞

1

n

n∑
i=1

Qq∑
Q′=2

G
(Q′)
n,i−1(α)∂θp

∫
�k

Q′∏
j=1

c
(lj)
i−1fθ(z) dz

=

Qq∑
Q′=2

∫∫
∂θpG

(Q′)(x, α)

Q′∏
j=1

c(lj)(x, z, θ0)fθ0(z) dzdπ

−
Qq∑

Q′=2

∫ {
G(Q′)(x, α)∂θp

∫
�k

Q′∏
j=1

c(lj)(x, z, θ0)fθ0(z) dz

}
dπ.

This is the convergence in probability uniformly in α. Moreover, by Proposition 4.1

and 4.4,

1

nhn

n∑
i=1

∂θpψ
(2)
i,n,q(α)

P−→ −
d∑

k,l=1

∫
∂θpa

(k)
(
β−1

)(k,l)
∂θq ã

(l)(x, α) dπ

= −
∫

(∂θp ã)
∗β−1(∂θq ã)(x, α) dπ,

1

n
√
hn

n∑
i=1

{
∂σrψ

(1)
i,n,q(α) + ∂σrψ

(2)
i,n,q(α)

}
P−→ 0,

1

n
√
hn

n∑
i=1

∂θpψ
(3)
i,n,r(α) =

1

n
√
hn

n∑
i=1

∂σrψ
(2)
i,n,q(α)

P−→ 0.

These convergences are also uniformly in α. Furthermore, applying Proposition 4.1

and 4.2, we have

1

n

n∑
i=1

∂σsψ
(3)
i,n,r(α)

P−→
d∑

k,l=1

∫
∂σs∂σr

(
β−1(x, σ)

)(k,l)
β(k,l)(x, σ0) dπ

+

∫
∂σs∂σr log detβ(x, σ)dπ

uniformly in α. Hence

1

n

n∑
i=1

∂σsψ
(3)
i,n,r(α0) = −

∫
tr
[
∂σrβ

−1∂σsβ
]
(x, σ0) dπ

=

∫
tr
[
(∂σrβ)β−1(∂σsβ)β−1

]
(x, σ0) dπ. �
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This ends the proof of (i).

The proof of (ii) is very easy. Notice that the convergence of Cn is uniform in

the parameters and that the uniform limit of Cn is continuous with respect to the

parameters. Denoting by B(α) the uniform limit of Cn(α), we have that

sup
|α|≤εn

|Cn(α + α0) − Cn(α0)|

≤ 2 sup
|α|≤εn

|Cn(α + α0) −B(α + α0)| + sup
|α|≤εn

|B(α + α0) −B| ,

where B = B(α0). The last side tends to zero as n tends to infinity. �

4.7.4 Proof of Lemma 4.9

According to the central limit theorem for a triangular array; see Theorem A.3 and its

remark, it suffices to show the following conditions:

n∑
i=1

∣∣∣∣En
i−1

[
1√
nhn

ψ
(v)
i,n,q

]∣∣∣∣ P−→ 0 (v = 1, 2), (4.45)

n∑
i=1

∣∣∣∣En
i−1

[
1√
n
ψ

(3)
i,n,q

]∣∣∣∣ P−→ 0, (4.46)

n∑
i=1

∑
v=1,2

En
i−1

[
1

nhn

ψ
(v)
i,n,qψ

(v)
i,n,q′

]
P−→ (K ′′

1 )(q,q′) (v = 1, 2), (4.47)

n∑
i=1

En
i−1

[
1

n
ψ

(3)
i,n,rψ

(3)
i,n,r′

]
P−→ 4K

(r,r′)
2 , (4.48)

n∑
i=1

En
i−1

[
1

nhn
ψ

(1)
i,n,qψ

(2)
i,n,q′

]
P−→ 0, (4.49)

n∑
i=1

En
i−1

[
1

n
√
hn

ψ
(v)
i,n,qψ

(3)
i,n,q′

]
P−→ 0 (v = 1, 2), (4.50)

n∑
i=1

En
i−1

[∣∣∣∣ 1√
nhn

ψ
(v)
i,n,q

∣∣∣∣
2+ν

]
P−→ 0 (v = 1, 2, ν > 0), (4.51)

n∑
i=1

En
i−1

[∣∣∣∣ 1√
n
ψ

(3)
i,n,r

∣∣∣∣
2+ν

]
P−→ 0 (ν > 0), (4.52)

where q, q′ = 1, 2, · · · , m1, and r, r′ = 1, 2, · · · , m2. It is not necessary that ν for

v = 1, 2 in (4.51) and one for (4.52) are the same value. The same argument was done

in the proof of Lemma 3.9.

Proof of (4.45).
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For v = 1, applying Corollary 4.2 (4.36), we have

n∑
i=1

∣∣∣∣En
i−1

[
1√
nhn

ψ
(1)
i,n,q

]∣∣∣∣ =
−hn√
nhn

n∑
i=1

∣∣∣∣∣
Qq∑

Q′=2

[
G

(Q′)
n,i−1

∫
|z|≤εn

{
Q′∏
j=1

c
(lj)
i−1(z)

}
f(z) dz

+R
(
α, λ(εn)hρQ′

n ∨ h2
n, Xtni−1

)]∣∣∣∣∣
= Op

(√
nhnεn

2
)

+Op

(√
nh1+4ρ

n (λ(εn))2 ∨
√
nh5

n

)
P−→ 0.

For v = 2, applying Lemma 3.38 (4.30), we have

n∑
i=1

∣∣∣∣En
i−1

[
1√
nhn

ψ
(1)
i,n,q

]∣∣∣∣
=

1√
nhn

n∑
i=1

∣∣∣∣∣
d∑

k,l=1

∂θqa
(k)
n,i−1

(
β−1

i−1

)(k,l)
En

i−1

[
X̄i,n1{|∆iXn|≤hρ

n}
]∣∣∣∣∣

= Op

(√
nh1+2ρ

n (λ(εn))2

)
P−→ 0.

Proof of (4.46).

Applying Lemma 3.38 (4.31) and Lemma 4.4, we have

n∑
i=1

∣∣∣∣En
i−1

[
1√
n
ψ

(3)
i,n,q

]∣∣∣∣
=

1√
n

n∑
i=1

∣∣∣∣∣
[
tr[∂θrβ

−1
i−1βi−1] +

∫
|z|≤εn

c
(l1)
i−1c

(l2)
i−1f(z) dz +R

(
α, λ(εn)h2ρ

n , Xtni−1

)]

+

[
∂σr detβi−1

detβi−1

+R
(
α, λ(εn)hn, Xtni−1

)] ∣∣∣∣∣.
Noticing that tr[∂σrβ

−1
i−1βi−1] = −∂σr detβi−1

detβi−1

, and
∫
|z|≤εn

|z|2f(z) dz = o
(
n−1/2

)
, we

have

n∑
i=1

∣∣∣∣E
[

1√
n
ψ

(3)
i,n,q

]∣∣∣∣ = Op

(√
n(λ(εn))2h4ρ

n

)
+Op

(√
n(λ(εn)hn)2

)
+ op(1)

P−→ 0.
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Proof of (4.47).

Applying Corollary 4.2 (4.36), we obtain

n∑
i=1

En
i−1

[
1

nhn
ψ

(1)
i,n,qψ

(1)
i,n,q′

]

=
1

nhn

n∑
i=1

Qq,Q′
q∑

Q,Q′=2

G
(Q)
n,i−1G

(Q′)
n,i−1E

n
i−1

[
Q+Q′∏
j=1

X̄
(lj)
i,n 1{|∆iXn|>hρ

n}
]

− 2

n

n∑
i=1

Qq,Q′
q∑

Q,Q′=2

G
(q)
n,i−1G

(q′)
n,i−1

∫
�k

{
Q∏

j=1

c
(lj)
i−1(z)

}
f(z) dz

× En
i−1

[
Q′∏
j=1

X̄
(lj)
i,n 1{|∆iXn|>hρ

n}
]

+
hn

n

n∑
i=1

Qq,Q′
q∑

Q,Q′=2

∏
q=Q,Q′

G
(q)
n,i−1

(∫
�k

{
q∏

j=1

c
(lj)
i−1(z)

}
f(z) dz

)

P−→
Qq,Q′

q∑
Q,Q′=2

∫∫
G(Q)G(Q′)(x)

{
Q+Q′∏
j=1

c(lj)(x, z)

}
f(z) dzdπ.

Moreover, applying Lemma 3.38 (4.31), we have

n∑
i=1

En
i−1

[
1

nhn
ψ

(2)
i,n,qψ

(2)
i,n,q′

]
=

1

nhn

n∑
i=1

En
i−1

[(
d∑

k,l=1

∂θqa
(k)
n,i−1

(
β−1

i−1

)(k,l)
X̄

(l)
i,n

)

×
(

d∑
k,l=1

∂θq′a
(k)
n,i−1

(
β−1

i−1

)(k,l)
X̄

(l)
i,n

)
1{|∆iXn|≤hρ

n}
]

P−→
∫

(∂θq ã)
∗β−1(∂θq′ ã)(x) dπ.

Proof of (4.48).

Applying Lemma 3.38 (4.31), (4.33) and Lemma 4.4, and noticing that

∫
|z|≤εn

4∏
j=1

c
(lj)
i−1(z)f(z) dz = op

(
h2ρ′

n n−1/2
)
,

since |c(x, z)| ≤ C|z|(1 + |x|)C on the set {|z| ≤ 1} and
∫
|z|≤εn

|z|2f(z) dz = o
(
n−1/2

)
,

we have

n∑
i=1

En
i−1

[
1

n
ψ

(3)
i,n,rψ

(3)
i,n,r′

]
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=
1

nh2
n

n∑
i=1

d∑
k,l,k′,l′=1

(
∂σrβ

−1
i−1

)(k,l) (
∂σr′β

−1
i−1

)(k′,l′)

×En
i−1

[
X̄

(k)
i,n X̄

(l)
i,nX̄

(k′)
i,n X̄

(l′)
i,n 1{|∆iXn|≤hρ

n}
]

+
1

nhn

n∑
i=1

d∑
k,l=1

∂σr′ detβi−1

det βi−1

(
∂σrβ

−1
i−1

)(k,l)
En

i−1

[
X̄

(k)
i,n X̄

(l)
i,n1{|∆iXn|≤hρ

n}
]

+
1

nhn

n∑
i=1

d∑
k′,l′=1

∂σr detβi−1

detβi−1

(
∂σr′β

−1
i−1

)(k′,l′)
En

i−1

[
X̄

(k′)
i,n X̄

(l′)
i,n 1{|∆iXn|≤hρ

n}
]

+
1

n

n∑
i=1

∂σr detβi−1

det βi−1

∂σr′ detβi−1

detβi−1
P n

i−1{|∆iX
n| ≤ hρ

n}

=
1

n

n∑
i=1

d∑
k,l,k′,l′=1

(
∂σrβ

−1
i−1

)(k,l) (
∂σr′β

−1
i−1

)(k′,l′)
J (k,l,k′,l′)

n (Xtni−1
, α)

+
1

n

n∑
i=1

∂σr′ det βi−1

detβi−1

tr
[
∂σrβ

−1
i−1βi−1

]
+

1

n

n∑
i=1

∂σr det βi−1

detβi−1

tr
[
∂σr′β

−1
i−1βi−1

]

+
1

n

n∑
i=1

∂σr detβi−1

det βi−1

∂σr′ detβi−1

detβi−1
+Op

(
λ

(εn)
0 h4ρ−1

n

)
.

Hence
n∑

i=1

En
i−1

[
1

n
ψ

(3)
i,n,rψ

(3)
i,n,r′

]
P−→ 4K

(r,r′)
2 by Proposition 4.1 (4.37).

Proof of (4.49).

By Lemma 3.38 (4.30), we see that

n∑
i=1

En
i−1

[
1

nhn

ψ
(1)
i,n,qψ

(2)
i,n,q′

]
= −1

n

n∑
i=1

Qq∑
Q′=2

G
(Q′)
n,i−1

∫
�k

{
Q′∏
j=1

c
(lj)
i−1(z)

}
f(z) dz

×
d∑

k,l=1

∂θqa
(k)
n,i−1

(
β−1

i−1

)(k,l)
En

i−1

[
X̄

(l)
i,n1{|∆iXn|≤hρ

n}
]

= Op

(
λ

(εn)
0 h1+ρ

n

)
P−→ 0.

Proof of (4.50).

For v = 1, applying Lemma 4.4 and Lemma 3.38 (4.31), we have

n∑
i=1

En
i−1

[
1

n
√
hn

ψ
(1)
i,n,qψ

(3)
i,n,q′

]
= − 1

n
√
hn

n∑
i=1

Qq∑
Q′=2

G
(Q′)
n,i−1

∫
�k

{
Q′∏
j=1

c
(lj)
i−1(z)

}
f(z) dz
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×
[

d∑
k,l=1

∂σr

(
β−1

i−1

)(k,l)
En

i−1

[
X̄

(k)
i,n X̄

(l)
i,n1{|∆iXn|≤hρ

n}
]

+ hn
∂σr detβi−1

detβi−1
P n

i−1{|∆iX
n| ≤ hρ

n}
]

= Op

(√
hn

)
.

For v = 2, applying Lemma 3.38 (4.30) and (4.32), we have

n∑
i=1

En
i−1

[
1

n
√
hn

ψ
(2)
i,n,qψ

(3)
i,n,q′

]

=

√
hn

n

n∑
i=1

d∑
k,l,k′,l′=1

∂θqa
(k)
n,i−1

(
β−1

i−1

)(k,l)
∂σr

(
β−1

i−1

)(k′,l′)

×En
i−1

[
X̄

(l)
i,nX̄

(k′)
i,n X̄

(l′)
i,n (θ)1{|∆iXn|≤hρ

n}
]

+
1

n
√
hn

n∑
i=1

d∑
k,l=1

∂θqa
(k)
n,i−1

(
β−1

i−1

)(k,l) ∂σr detβi−1

det βi−1
En

i−1

[
X̄

(l)
i,n1{|∆iXn|≤hρ

n}
]

= Op(λ
(εn)
0 hρ+1/2

n ).

Proof of (4.51).

For v = 1, applying Lemma 4.2 (4.36), we have

n∑
i=1

En
i−1

[∣∣∣∣ 1√
nhn

ψ
(1)
i,n,q

∣∣∣∣
2+ν

]

≤ C

(nhn)1+ν/2

n∑
i=1

Qq∑
Q′=2

(
G

(Q′)
n,i−1

)2+ν

En
i−1

⎡
⎣
∣∣∣∣∣

Q′∏
j=1

X̄
(lj)
i,n

∣∣∣∣∣
2+ν

1{|∆iXn|>hρ
n}

⎤
⎦

+
Ch2+ν

n

(nhn)1+ν/2

n∑
i=1

Qq∑
Q′=2

En
i−1

⎡
⎣
∣∣∣∣∣G(Q′)

n,i−1

∫
�k

{
Q′∏

j=1

c
(lj)
i−1(z)

}
f(z) dz

∣∣∣∣∣
2+ν

⎤
⎦

= Op

(
1

nν/2h
ν/2
n

)
+Op

(
h1+ν

n

nν/2h
ν/2
n

)
.

For v = 2, applying Lemma 3.38 (4.34), we have

n∑
i=1

En
i−1

[∣∣∣∣ 1√
nhn

ψ
(2)
i,n,q

∣∣∣∣
2+ν

]

≤ C

(nhn)1+ν/2

d∑
k,l=1

∣∣∣∂θqa
(k)
n,i−1

(
β−1

i−1

)(k,l)
∣∣∣2+ν

En
i−1

[∣∣∣X̄(l)
i,n

∣∣∣2+ν

1{|∆iXn|≤hρ
n}
]
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= Op

(
1

nν/2h
ν/2
n

)
.

Proof of (4.52).

Notice that, from Lemma 4.3 (4.8),

En
i−1

[
|X̄(k)

i,n X̄
(l)
i,n|2+ν1{|∆iXn|≤hρ

n,Jn
i (εn)=0}

]
= R

(
α, h(2+ν)/2∧(1+ρ′ν)

n , Xtni−1

)
,

and that |X̄(k)
i,n X̄

(l)
i,n| = R

(
α, h2ρ

n , Xtni−1

)
on the set {|∆iX

n| ≤ hρ
n, J

n
i (εn) ≥ 1}. Then

we see that

n∑
i=1

En
i−1

[∣∣∣∣ 1√
n
ψ

(3)
i,n,r

∣∣∣∣
2+ν

]

≤ 1

n1+ν/2h2+ν
n

n∑
i=1

d∑
k,l=1

∂σr

(
β−1

i−1

)(k,l)
En

i−1

[∣∣∣X̄(k)
i,n X̄

(l)
i,n

∣∣∣2+ν

1{|∆iXn|≤hρ
n}
]

+
1

n1+ν/2

n∑
i=1

∣∣∣∣∂σr detβi−1

detβi−1
(σ)

∣∣∣∣P n
i−1{|∆iX

n| ≤ hρ
n}

= Op

(
h

(2+ν)/2∧(1+ρ′ν)
n

nν/2h2+ν
n

)
+Op

(
λ(εn)h

1+2ρ(2+ν)
n

nν/2h2+ν
n

)
+Op

(
1

nν/2

)

= Op

(
(nhn)−ν/2h−1

n

)
+Op

(
λ(εn)h

4ρ−4(1−2ρ)/ν
n

nhn

)
+Op

(
1

nν/2

)

The last right-hand side tends to zero as n → ∞ if we take ν to be sufficiently large.

This completes the proof. �



Chapter 5

Nonparametric estimation of Lévy

densities

This chapter concentrates on the density estimation of Lévy measures, which are one of

the most important characteristics in jump-processes. We regard a large increment as a

jump size approximately, and apply the idea of the usual kernel density estimation. We

prove that our kernel estimator has the consistency in the sense of the mean squared

error (MSE). In Section 5.4, we show some simulation results and point out a practical

problem on our asymptotic filter. We shall give some intuitive solution for that problem

meanwhile, and more theoretical method is discussed in the next chapter.

5.1 Nonparametric framework

Up to the previous chapter, we have discussed the parametric inference for diffusion

processes with jumps. Parametric models can often be powerful tools to predict the

future’s phenomena once the true model is specified. However, in applications, we

sometimes face the trouble of a parametrization of a model since, for example, we

might get little prior information about the true model of the corresponding phenom-

ena, and we could not determine the specific parametric model. Therefore we might

need a rich parametrization which includes sufficiently many parameters. However it

could then cause some statistical problems such as identifiabilities, or the optimiza-

tion of estimating functions. On the other hand, too simple parametrization would

cause misspecifications of the model. To break out of this dilemma, a nonparametric

framework is useful.

As we have already seen, in the parametric inference treated in Chapter 3 and

121
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4, the ergodicity of the model was essential to obtain some convergence theorems

of estimating functions. However, in the practical case, especially in the financial

modeling, non-ergodic models are well used, and we need to prepare the inference

under the non-ergodic framework.

In this chapter we again return to a Poisson type jump-diffusion X:

dXt = a(Xt) dt+ b(Xt) dwt +

∫
E
c(Xt−, z) (p− q)(dt, dz),

where a, b and c are unknown Borel functions and q(dt, dz) = f(z) dzdt is an unknown

measure with
∫
E f(z) dz <∞. Suppose that the observations consist of the same type

of one as in Chapter 3 and 4; {Xtni
}n

i=0, t
n
i = ihn with hn → 0 and nhn → ∞.

There are only a few previous works about the nonparametric inference under such

a setting. Recently, Bandi and Nguyen [5] proposed some functional estimators of

higher order infinitesimal moments conditional on Xt− = x at any time t > 0:

a(x), σ2(x) +

∫
E
c2(x, z)f(z) dz, and

∫
E
ck(x, z)f(z) dz (k > 2),

by way of the local time estimates. However their method could not generally give

the separate estimator of the diffusion part and the quadratic moment of jump size.

Shimizu [90] gave an estimator of only the diffusion coefficient separately under the

different sampling scheme; the terminal nhn is fixed, by using the same type of the

filter as in Chapter 3. Although we would not describe this method here since the

experimental design is different from ours in this thesis, it could be easily imagined

from the facts (4.31) and (4.36) in Chapter 4 that such a separation could be possible.

By the same idea as above, Shimizu [93] also proposed a kernel type estimator of the

Lévy density f(z) under our sampling scheme. This kernel estimator also enables us

to obtain the separate estimator of the quadratic moment of jumps; e.g. Shimizu [95].

In this chapter, we describe the density estimation of Lévy measures from discrete

observations.

Let us explain the idea of a kernel density method used in this chapter. If we can

obtain continuous data of X then it would be easy to construct consistent estimators of

Lévy measures by the analogy of the case where samples are independent and identically

distributed since we know all of amplitudes of jumps exactly. For example, we consider

an 1-dimensional model:

dXt = a(Xt) dt+ b(Xt) dwt + dzt,

where a, b are unknown functions, w is a Wiener process, and z is a compound Poisson

process with the Poisson intensity 1 and an unknown distribution of jumps F (z) dz. If
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we can observe whole the path on [0, T ], so we can observe the first n jumps (∆zi)1≤i≤n

on [0, T ], then we can estimate the density F (z) by

Fn(z) =
1

nδn

n∑
i=1

K

(
z − ∆zi

δn

)
(5.1)

with a suitable kernel K and a sequence δn, which converges to the true F in the MSE

sense at the rate nδn; see Masry [65] for details. A more general type of inference from

randomly sampled data is discussed in Prakasa Rao [78, 79].

If we can observe discrete data only, it is natural to substitute the increments

of neighboring data for ∆zi’s in above Fn(z) according to the context of Chapter 3.

Though we consider more general types of stochastic differential equations, the same

type of estimator can be available.

5.2 Notations and assumptions

We consider the following k-dimensional stochastic differential equation on a filtered

probability space (Ω,F , (Ft)t≥0, P ):⎧⎨
⎩ dXt = a(Xt) dt+ b(Xt) dwt +

∫
E
c(Xt−, z) (p− q)(dt, dz),

X0 = x0,
(5.2)

where x0 is a random variable on R
d, E = R

d \ {0}, (wt)t≥0 is a k′-dimensional Wiener

process, a(x) is an R
k-valued Borel function defined on R

k, b(x) is an R
k ⊗ R

k′
-valued

Borel function defined on R
k, c(x, z) is an R

k-valued Borel function defined on R
k ×

E , p(dt, dz) is a homogeneous Poisson random measure on R+ × E , and q(dt, dz) is

its intensity measure, that is, E[p(dt, dz)] = q(dt, dz). We suppose that q has the

expression q(dt, dz) = f(z) dzdt, that is, f is the Lévy density. Hereafter, it would also

be convenient to regard p as a random measure associated with a compound Poisson

process z of the form zt =
∑Nt

i=1 εi with the Lévy density f(z) = λF (z).

We suppose that the process Xt is observed at each time point tni = ihn (i =

1, 2, . . . , n) in the time interval [0, Tn], where Tn = nhn with the asymptotics hn →
0, Tn → ∞ as n → ∞. Our goal is to estimate the Lévy density f(z) from such

discrete observations.

Let Cm
r (�) (r = m+ l, 0 < l ≤ 1, m ∈ N∪ {0}) be the space of real valued bounded

functions g, defined on R
d, which are m times differentiable and such that∣∣∣∣∣ ∂g(m)

∂zj1
1 . . . ∂zjd

d

(z) − ∂g(m)

∂zj1
1 . . . ∂zjd

d

(z′)

∣∣∣∣∣ ≤ �|z − z′|l
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for every z, z′ ∈ R
d ; j1 + · · · + jd = m.

Throughout this chapter, we make the following four assumptions.

A 1 f(z) ∈ Cm
r (�) for some r > 0 and m ∈ N ∪ {0}. Moreover 0 <

∫
E f(z) dz <∞.

A 2 There exists a positive constant L such that |a(x) − a(y)|+ |b(x)− b(y)| ≤ L|x−
y|. Moreover, the coefficient c(x, z) is known, and there exists a function ζ(z) with∫
E ζ

2(z) f(z) dz <∞ such that |c(x, z) − c(y, z)| ≤ ζ(z)|x− y| and |c(x, z)| ≤ ζ(z)(1 +

|x|).

A 3 infx |c(x, z)| ≥ c0|z| for a constant c0 > 0, and y = c(x, z) has an inverse z =

c−1(x, y) such that ∂yc
−1(x, y) is bounded, and that ∂xc

−1(x, y)|leC|y| uniformly in x.

A 4 supt≥0E[|Xt|p] <∞ for arbitrary p ≥ 0.

Remark 5.1 We admit the case where the coefficients a(x) and b(x) are unknown.

The assumption that c(x, z) is known; A2, seems to be very restrictive. However if we

did not know c(x, z) then it should not be possible to identify ∆z, therefore we can

not estimate the distribution of ∆z. Nevertheless the readers may also be interested

in considering the case where c is unknown. In this setting, for example, as k = 1, an

integral such as
∫
E c

p(Xt−, z)f(z) dz or E
[∫

E c
p(Xt−, z)f(z) dz

]
can be estimated; see

Bandi and Nguyen [5], Shimizu [92].

5.3 Density estimation and the optimal rate

5.3.1 Continuously observed case

Before considering the estimation from sampled data, let us consider the kernel density

estimation for continuously observed diffusion processes with jumps.

In the following discussion, we consider the spaceHm,l of kernels of order (m, l) (m ∈
N ∪ {0}, 0 < l ≤ 1), that is, the space of mappings K : R

d → R bounded, integrable,

with the bounded first derivative such that
∫
�d K(u) du = 1 and satisfying the following

conditions:∫
�d

|(u1, . . . , ud)|l|u1|α1 . . . |ud|αd|K(u1, . . . , ud)| du1 . . . dud <∞ (5.3)

for α1, . . . , αd ∈ N ∪ {0}; 0 ≤ α1 + . . .+ αd ≤ m, and∫
�d

uα̃1
1 . . . uα̃d

d K(u1, . . . , ud) du1 . . . dud = 0 (5.4)
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for α̃1, . . . , α̃d ∈ N ∪ {0}; 1 ≤ α̃1 + . . .+ α̃d ≤ m.

Suppose that we can observe whole the path of X in [0, T ], and let us denote by

τi the time point of ith jump of X. In the interval [0, T ], we can observe the samples

(∆zτi
)1≤i≤NT

, where ∆zs = c−1(Xs−,∆Xs), and we can regard them as the randomly

observed samples, whose number NT follows a Poisson distribution with the intensity

λT , from a stationary process with the marginal distribution F . Our interest is to

estimate the function f(z) = λF (z) from the above samples. A possible estimator is

given by the following intuitive discussion: as well as the i.i.d. case, a kernel estimator

of F may be given by

FT (z) :=
1

NT δd
T

NT∑
i=1

K

(
z − ∆zτi

δT

)

=
1

NT δd
T

∫ T

0

K

(
z − ∆zt

δT

)
dNt,

where K ∈ Hm,l and δT is a real sequence which satisfies some conditions. Since

NT/T → λ (T → ∞) with probability one, and the amplitude of each jump is inde-

pendent of the Poisson process N ,

fT (z) :=
NT

T
FT (z) =

1

Tδd
T

∫ T

0

K

(
z − ∆zt

δT

)
dNt (5.5)

may be expected to become an L2-consistent estimator of f(z). Actually, Prakasa Rao

[78, 79] studied the same problem as d = 1. He studied some asymptotic properties of

the same type of estimators made by delta-type kernels. As d = 1, our kernel corre-

sponds to his special case but we deal with the multidimensional case. The following

theorem shows the consistency in the MSE sense and the optimal rate of convergence.

Theorem 5.1 Assume that there exists a real-valued sequence {δT} indexed by T such

that ηT := δTT
1

2r+d → η for a positive constant η. Then, the following inequality is

valid for the estimator fT (z) given in (5.5):

lim sup
T→∞

sup
z∈�d

T
2r

2r+dE|fT (z) − f(z)|2 ≤ C(η, f,K), (5.6)

where

C(η, f,K) = η2r

( ∑
j1+···+jd=m

�

j1! . . . jd!

∫
�d

|u|l|u1|j1 . . . |ud|jd|K(u)| du
)2

+ η−d sup
z∈�d

|f(z)|
∫
�d

K2(u) du. (5.7)
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See Section 5.7.1 on this proof.

Remark 5.2 The convergence rate T
2r

2r+d is natural as an analogy to the i.i.d. case;

see Ibragimov and Has’minskii [41], Chapter IV. If d = 1 then this rate is consistent

with the case of the delta-kernel δ−1
T K(zδ−1

T ) as in Prakasa Rao [79], and this is a

natural extension to the multidimensional case.

5.3.2 Discretely observed case

We use the judgment proposed in Chapter 3 to discriminate the continuity from the

discontinuity of the path in each hn-time interval. The following lemma which justifies

the judgment is a corollary of the Lemma 3.3 in Chapter 3, and the proof is almost

the same as that. Therefore we omit the proof.

Lemma 5.1 Let Jn
i be the number of jumps in an interval [tni , t

n
i−1) and we set

{|∆Xn
i | ≤ Lhρ

n} =

2⋃
j=0

Cn
i,j, {|∆Xn

i | > Lhρ
n} =

2⋃
j=0

Dn
i,j

for constants L > 0 and ρ ∈ [0, 1/2), where

Cn
i,0 = {Jn

i = 0, |∆Xn
i | ≤ Lhρ

n} , Dn
i,0 = {Jn

i = 0, |∆Xn
i | > Lhρ

n} ,
Cn

i,1 = {Jn
i = 1, |∆Xn

i | ≤ Lhρ
n} , Dn

i,1 = {Jn
i = 1, |∆Xn

i | > Lhρ
n} ,

Cn
i,2 = {Jn

i ≥ 2, |∆Xn
i | ≤ Lhρ

n} , Dn
i,2 = {Jn

i ≥ 2, |∆Xn
i | > Lhρ

n} .
Then, for any p ≥ 1,

P{Cn
i,0|F n

i−1} = e−λhnR̃(z, hp
n, Xtni−1

), P{Dn
i,0|F n

i−1} = e−λhnR(z, hp
n, Xtni−1

),

P{Cn
i,1|F n

i−1} = R(z, hρ+1
n , Xtni−1

), P{Dn
i,1|F n

i−1} = λhne
−λhnR̃(z, hρ

n, Xtni−1
),

P{Cn
i,2|F n

i−1} ≤ λ2h2
n, P{Dn

i,2|F n
i−1} ≤ λ2h2

n.

The order of the conditional probability of Cn
i,1 in the above lemma is different

from the one of order h3
n in Chapter 3. We assumed there that a Lévy density f(z)

satisfies |f(z)| ≤ c|z|γ (γ > 3) around the origin for estimation under the asymptotics

nh2
n → 0. However, we only assume the boundedness of f around the origin. Therefore,

it is possible in our setting that small jumps occur more frequently than the setting in

Chapter 3, and it would be more difficult to identify such small jumps. That is why

the order of the conditional probability of Cn
i,1 is smaller than the one in Chapter 3.

On the other hand, we have to demand a more rapid experimental design such that

nh1+δ
n → 0 for a constant δ ∈ (0, 1/2] instead of relaxing the assumption on the Lévy

density.
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Remark 5.3 One might think that the constant L in the filter is redundant since it

could be included in the sequence hn by regarding hn as L−1/ρhn. Nevertheless it is

convenient to leave this constant L since hn is the observation interval, which is given in

practical data, and we should choose L in accordance with hn. Actually we encounter a

problem that the filter does not work well when n is fixed in dealing with the practical

data. Selecting L suitably, we can improve the performance of estimation; see Section

5.4 and Chapter 6.

According to the context in Chapter 3, the amplitude of jump of X in the interval

[tni−1, t
n
i ) can be approximated by the increment ∆iX

n. Therefore, we can estimate

an unobservable underlying jump of z as ∆iz
n := c−1(Xtni−1

,∆iX
n), and it would be

natural to use the following fn(z) as an estimator of the Lévy density:

fn(z) :=
1

Tnδd
n

n∑
i=1

K

(
z − ∆iz

n

δn

)
1{|∆Xn

i |>Lhρ
n}, (5.8)

where K ∈ Hm,l and {δn}n∈� is a real sequence such that Tnδ
d
n → ∞. This is a straight

discretization of (5.5).

Our main theorem is the following.

Theorem 5.2 Assume that there exists a constant ν ∈ (0, 2−1(2r + d)(2r + d + 1)−1)

such that Tnh
ν
n = O(1) as n → ∞, and that there exist a constant ρ ∈ [0, 1/2) and a

real-valued sequence {δn}n∈� such that ηn := δnT
1

2r+d
n → η for a positive constant η,

δnh
ρ−1/2
n = O(1) and Tnh

1/2
n δr−1

n = o(1) as n → ∞. Then the following inequality is

valid for the estimator fn(z) given in (5.8):

lim sup
n→∞

sup
z∈�d

T
2r

2r+d
n E |fn(z) − f(z)|2 ≤ C(η, f,K), (5.9)

where C(η, f,K) is given in Theorem 5.1 (5.7).

See Section 5.7.2 on this proof.

Remark 5.4 The above convergence rate T
2r

2r+d
n is natural since this attains the opti-

mal rate for continuous case. However, without being particular about the optimality,

it is possible to improve the order of the experimental design, that is, it is also possible

to estimate under the assumption, for example, Tnh
ν
n → ∞ but Tnh

ν̃
n → 0 for some

ν̃ ≥ 1/2; see the proof in Section 5.7.2 and the expression (5.32).

Remark 5.5 We sometimes can not check the condition A4. However this condition is

one of the sufficient conditions for the above theorem and the estimator fn(z) sometimes
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can work well without this condition if we construct the filter suitably. In Section 5.4.4

below, we describe how to construct the another filter under the case where the diffusion

coefficient b is known, and show the performance for that filter.

5.4 Simulation study

For simulation studies, we use the following one dimensional SDE:

dXt = µXt dt+ b(Xt, σ) dwt + dzt, zt =

Nt∑
j=1

εj, (5.10)

where Nt is a Poisson process with the intensity λ and εj’s are i.i.d. r.v’s with a density

F (z) which satisfies A1.

In Sections 5.4.1 - 5.4.3 below, we consider the case where b(x, σ) = σ. This process

is called a Lévy driven Ornstein-Uhlenbeck (O-U) process, in which X is ergodic if

µ < 0, and there exists an invariant measure π. It is known that suptE [|Xt|p] <∞ if∫
E
|z|pf(z) dz <∞ for any p > 0 and

∫
�d |x|p η(dx) <∞ for η which is the distribution

of X0; see Masuda [67], therefore, A4 are satisfied in this model. Of course, Conditions

A2 and A3 are satisfied.

In Section 5.4.4 below, we set b(x, σ) = σx in which X is non-ergodic. It is not so

easy to check A4, and the condition would be probably unsatisfied. However, we show

that our method is robust without this condition if we choose a suitable filter. In this

example, we assume that the diffusion coefficient is known, and we propose another

filter which is data adaptive.

In each simulation below, we computed the estimated value fn(z) as a pointwise

sample mean based on 500 times experiments. We set X0 = 1.0, hn = n−0.8 and

K(x) = 1√
2π
e−x2/2 as a kernel throughout this section.

5.4.1 Simple examples

First, let us consider the case where F (z) is the density of Gaussian distribution N (0, ν)

and (µ, σ, λ, ν) = (−0.01, 0.01, 15.0, 1.0). We choose ρ = 0.49, δn = n−0.1 and L = 1.0.

The estimation results are presented in Fig. 5.1. It will be comparatively easy to judge

whether a jump occurred or did not in this model; if a jump occurred then it should

be large compared with Brownian shocks. We see from Fig. 5.1 that the variance of

jumps seems to be overestimated since the small jumps are cut by the filter.

Second, we give another example for the model (5.10) with different parameters

such that (µ, σ, λ) = (−0.03, 0.01, 1.0), ρ = 0.49, but F (z) is a density of the two-sided
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Fig. 5.1: Estimation of the Lévy density f(z) = λ(
√

2πν)−1 exp (−(2ν)−1z2) with

(µ, σ, λ, ν) = (−0.01, 0.01, 15.0, 1.0), ρ = 0.49, L = 1.0, hn = n−0.8, δn = n−0.1

for sample size 500, 3000, 10000 and 15000 respectively.

gamma distribution Γ(α, β):

F (z) =
1

2
βα|x|α−1Γ−1(α) exp(−β|x|) (5.11)

with α = 4.0 and β = 5.0. We show the results with the sample sizes n = 500, 3000,

10000, and 15000 in Fig. 5.2. In this simulation, we set L = 0.2 in the filter and this

seems to discriminate the pure jumps from the diffusion shocks so well.

5.4.2 Some troubles in the estimation

In the first two examples, we took L = 1.0 in the former example and L = 0.2 in the

latter, and that ρ = 0.49 in common. How should we choose the constant L and ρ?

Thanks to Lemma 5.1, it may be better to choose ρ ∈ [0, 1/2) as large as possible

since the larger ρ becomes, the more easily the filter can judge a single jump. Hence we

consider the choice of L with ρ fixed as large as possible; in the sequel, we fix ρ = 0.49.

On the constant L, we could not choose L by the asymptotic theory. However, if

the constant L is chosen unsuitably then the performance of estimation can get worse.

See Fig. 5.3, in which we chose the true value of the diffusion parameter σ(= 0.5)

larger than the one in the first example, and the other setting is the same. In this
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Fig. 5.2: Estimation of the Lévy density f(z) = λβα|x|α−1 exp(−β|x|)/2Γ(α) with

(µ, σ, λ, α, β) = (−0.03, 0.01, 15.0, 4.0, 5.0), ρ = 0.49, L = 0.2, hn = n−0.8, δn = n−0.1

for sample size 500, 3000, 10000 and 15000 respectively.

case, the estimated densities are awfully overestimated, particularly around the origin.

It seems that the filter misunderstands the large increments by Brownian shocks with

by jumps, so the Poisson intensity is overestimated. This is a trouble caused by the

observation number n stopped.

Our estimator fn(z) is theoretically L2-consistent estimator and Theorem 5.2 en-

sures that our filter asymptotically works well for any selection of L. However, the

sufficient sample number can depend on the structure of the true model, therefore we

have to choose the suitable constant L according to n in each model. Of course, this

dose not imply that some choices of L possibly lead to the inconsistency of estimators;

this can be confirmed, for example, in Fig. 5.6 as mentioned later.

5.4.3 Selection problem of the filter

According to the discussion in Chapter 3, if the process X is ergodic, the estimator

λ̂n(L) =
1

nhn

n∑
j=1

1{|∆iXn|>Lhρ
n} (5.12)
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Fig. 5.3: Estimation of the Lévy density f(z) = λ(
√

2πν)−1 exp (−(2ν)−1z2) with

(µ, σ, λ, ν) = (−0.01, 0.5, 15.0, 1.0), ρ = 0.49, L = 1.0, hn = n−0.8, δn = n−0.1 for

sample size 500, 1000 and 2000 respectively.

can be one of estimators of the intensity λ. Fig. 5.4 shows the graphs of the L-

pointwise sample mean of λ̂n(L) based on 1000 simulations for n = 500, 3000 and

10000; it corresponds to the approximation of the curve of E[λ̂n(L)]. It is natural that

λ̂n(L) decreases rapidly in small L, and slowly in large L since the filter with small L

captures the increments by diffusions, whose order of numbers is O(n), as well as by the

true jumps, and the filter with large L hardly captures the increments by diffusions but

some large jumps, whose order of numbers is O(nhn). Therefore, intuitively speaking,

it might be better to choose the smallest possible L at which the curve becomes nearly

flat. It implies that the filter excluded influences by diffusions as much as possible,

but does not exclude too much the true jumps. To see this, we presented in Fig.

5.5 the graphs of the numerical derivatives in L of the estimated intensity curve. In

order to avoid blurring of the pointwise calculated numerical derivatives, we plotted

the five-points moving average curves.

From the intuitive point of view as above, it is better to choose L at which the

derivative is nearly zero visually. In fact, by evaluating E[λ̂n(L)] analytically, we find

that such derivatives can approximately decrease in the same way as the tail of the

Lévy density f(z) after that the filter excludes the influences by Brownian shocks:
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Fig. 5.4: Estimation of the intensity λ as f(z) = λ(
√

2πν)−1 exp (−(2ν)−1z2) with

(µ, σ, λ, ν) = (−0.01, 0.5, 15.0, 1.0) for sample size 500, 3000 and 10000 respectively.

d
dL
E[λ̂n(L)] ≈ 2e−λhnf(Lhρ

n) for large L; Lemma 6.1 in Chapter 6. Therefore the

derivatives can not be zero generally. However, if F (z) has the light tail as the normal

density and λ� n, then the curve of the derivatives look like zero compared with the

enormous influences by diffusions.

Remark 5.6 Though we calculated the L-pointwise sample mean of λ̂n(L) based on

1000 simulations in Fig. 5.4, we could not calculate such a sample mean from the real

data which is obtained from an one sample path. However, if n is sufficiently large,

then we can use the estimator λ̂n(L) from one sample path instead of E[λ̂n(L)] since

|λ̂n(L) − E[λ̂n(L)]| → 0 (n→ ∞) in probability for each L.

We can choose, for example, that (n, L) = (500, 1.2), (3000, 1.6) and (10000, 1.7)

in view of Fig. 5.5, and the results are shown in Fig. 5.7. We also show the case

with (n, L) = (15000, 1.7) in that figure for the purpose of reference. Though we

might not point out the optimal L exactly, the performances are dramatically improved

compared with in Fig. 5.3. It would be useful in some practical situations although

this is completely intuitive method. However, the constant L should be chosen from

more statistical point of view. A suitable method has never established yet, and it is

a problem to be studied for the future. However, in a simple model, we will discuss a
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Fig. 5.5: The five-points moving average curves of the numerical derivatives of λ̂n(L)

in L for sample size 500, 3000 and 10000 respectively.

statistical filter selection in Chapter 6.

For the purpose of reference, we presented the graphs of λ̂n(L) for the model (5.11)

in Fig. 5.6. We will be able to guess that it would suffice to choose, for example,

0.15 ≤ L ≤ 0.2 for each sample size. As already mentioned, L = 0.2 was enough.

The view of Fig. 5.6 also implies that our filter works asymptotically well for much

smaller L than 0.2. Look at the curves around the interval [0.06, 0.07] for each n. The

intensity for n = 3000 is estimated larger than for n = 500 by some misjudgments,

however, it appears to be closer to the true value as n = 10000 than the case where

n = 500. This implies that the consistency is true for the different selection of L. In the

example of Fig. 5.4, we could not show such phenomenon visually because of the too

slow convergence of estimator. Intuitively speaking, the probability of misjudgment of

jumps is about

pn := P {|σwhn| > Lhρ
n} = 2

[
1 − Φ

(
σ−1Lhρ−1/2

n

)]
, ρ ∈ [0, 1/2).

In the setting of Fig. 5.4, p10000 = 0.031326 and p15000 = 0.031318, therefore the

misjudgment is hardly improved at all. We would need to choose the sample size n

enormously large to demonstrate the consistency of fn regardless of the selection of

L in that setting, and it would exceed the ability of the usual calculator. However it

must be possible to obtain the same result as in Fig. 5.6.
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Fig. 5.6: Estimation of the intensity λ as f(z) = 2−1λβα|x|α−1Γ−1(α) exp(−β|x|) with

(µ, σ, λ, α, β) = (−0.03, 0.01, 15.0, 4.0, 5.0) for sample size 500, 3000 and 10000 respec-

tively.

Remark 5.7 Although we discussed the selection method for L in the case where X

is ergodic, we recently find that the estimator λ̂n(L) is consistent to the true λ even

if X is non-ergodic; see Shimizu [95]. Therefore the above method could be available

when X is non-ergodic.

5.4.4 Data adaptive filter

In the previous section, we described the case where the diffusion coefficient is a con-

stant. When the diffusion coefficient depends on Xt; for example b(x) = σx, some

simulations show that the behaviors of λ̂n(L) in L are unstable. However, if the dif-

fusion coefficient b(x) is known then we can construct the data adaptive filter which

improves the performance of the estimation.

In this section, we consider the special case where the coefficient b is known. Al-

though the method described below is just a numerical one, it would sometimes useful

in some applications.

One can see by the discussion in Chapter 3 that it may be possible to replace a

constant L by Ft-adapted process Lt(hn) which satisfies some moment conditions and

Ltni−1
(hn) = Op(h

ρ
n) as n→ ∞, and to make the filter {|∆iX

n| > Ltni−1
(hn)}.
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Fig. 5.7: Estimation of the Lévy density f(z) = λ(
√

2πν)−1 exp (−(2ν)−1z2) with

(µ, σ, λ, ν) = (−0.01, 0.5, 15.0, 1.0), δn = n−0.1 for sample size 500, 3000 and 10000

respectively.

Suppose that b2(Xtni−1
) > 0. Note that, in one dimensional case,

Ni,n := (∆iX
n − a(Xtni−1

)hn)(b2(Xtni−1
)hn)−1/2

approximately follows the standard normal distribution, which satisfies for large n that

P

⎧⎨
⎩
∣∣∣∣∣∣
∆iX

n − a(Xtni−1
)hn√

b2(Xtni−1
)hn

∣∣∣∣∣∣ > uαn/2

⎫⎬
⎭ ≈ αn ≈ P

⎧⎨
⎩ |∆iX

n|√
b2(Xtni−1

)hn

> uαn/2

⎫⎬
⎭ ,

where uz is the z-percentile of the standard normal distribution. Therefore

Ltni−1
= uαn/2

√
b2(Xtni−1

)hn ∨ hρ
n (5.13)

will be expected to improve the judgment of jumps. Here, we should choose the level

αn so that it depends on the observation number n since the extent of misjudgments

depends on n.

Let us consider the following model, which is a non-ergodic case:

dXt = µXt dt+ σ0Xt dwt + dzt,

with the Lévy density f(z) = λ√
2πν

exp
(
− z2

2ν

)
and (µ, λ, ν) = (−0.01, 15.0, 1.0). We

assume that σ0 = 0.5 is known. We chose αn as αnn = 15 for n = 500, 3000, and 10000.
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Fig. 5.8: Estimation of the Lévy density in the model dXt = µXt dt + σ0Xt dwt + dzt

(σ0 = 0.5 is known) and f(z) = λ(
√

2πν)−1 exp (−(2ν)−1z2) with (µ, λ, ν) =

(−0.01, 15.0, 1.0), ρ = 0.49, hn = n−0.8, δn = n−0.1 and αnn = 15 for sample size

500, 3000 and 10000 respectively.

This implies that respectively 3%, 0.5%, and 0.15% of the large shocks by diffusions

are misjudged as jumps.

The estimation results are presented in Fig. 5.8. It seems that the influences by

diffusions are well excluded. However, it is not necessarily the case where fn becomes

a good estimator as n increases with αnn = 15. The next Fig. 5.9 shows the results

of the case 100αn = 0.1(%) and 0.15(%) as n = 15000. As 100αn = 0.15(%), it seems

that fn is a good estimator. On the other hand, as 100αn = 0.1(%) (αnn = 15), the

filter cuts too many small jumps, and fn underestimates around the origin.

Intuitively speaking, the mean of the number of misjudgments is roughly en =

αn(n − λnhn) ≈ αnn for sufficiently large n and λhn � 1, but the level en should be

chosen by an observer suitably so that those errors will not influence on estimation.

However an observer could not determine the level without prior information. Therefore

there remains room to consider how to choose the level en, and this should be done for

the future.
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Fig. 5.9: Estimation of the Lévy density in the model dXt = µXt dt + σ0Xt dwt + dzt

(σ0 = 0.5 is known) and f(z) = λ(
√

2πν)−1 exp (−(2ν)−1z2) with (µ, λ, ν) =

(−0.01, 15.0, 1.0), ρ = 0.49, hn = n−0.8, δn = n−0.1 and n = 15000 for 100αn =

0.15 and 0.01 (%).

5.5 Conclusion of this chapter

This chapter tackles the identification of the Lévy density, which completely controls

the behavior of jumps, from the frequently observed data. Though we presented the

inference from continuous observations in Theorem 5.1, this should be a benchmark for

the inference from discrete observations, and it should certainly be considered before

the inference from discrete observations.

One of the advantages of this chapter is that we do not need to mind whether

the continuous part is known or unknown, and whether the model is ergodic or non-

ergodic which is often important in the parametric setting. Therefore the theory in

this chapter can be applied to a wide class of models in these sense. However there

are some annoying restriction on the order of hn; the experimental design and δn; the

bandwidth: the conditions

Tnh
ν
n = O(1), Tnδ

2r+d
n = O(1), δnh

ρ−1/2
n = O(1), Tnh

1/2
n δr−1

n = o(1), (5.14)

should be satisfied as n tends to infinity, where Tn = nhn, ν ∈ (0, 2r+d
2(2r+d+1)

), ρ ∈ [0, 1
2
),

d is the dimension of the process and r is the smoothness of the Lévy density.
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We used the asymptotic filter {|∆iX
n| > Lhρ

n} for a constant L. Though this filter

asymptotically works well for arbitrary constant L in theory, their capabilities actually

depend on the constant L. Therefore it is critical to choose L under the practical

situation that the number of observations n is fixed.

What we can learn from the results of simulations is, although it is intuitively clear,

that it is easy to identify the existence of jumps if the absolute value of the diffusion

coefficient is relatively small compared with the amplitudes of jumps. Actually, in two

examples presented in Section 5.4.1, the estimator fn(z) does not diverge as long as we

do not choose an L which is extremely small. However, as described in the example

in Section 5.4.2, it becomes difficult to choose L when increments by diffusion shocks

are as large as the ones by jumps. As a consequence, it is possible that the asymptotic

theory does not work well even under enormous sample size.

This chapter proposed some intuitive methods to choose the constant L from the

data. The selection method of L in Section 5.4.3 focuses attention on the difference

between the order of the frequency of continuous noise and that of discontinuous breaks.

In consequence of many simulations, we at least find the following:

• In ergodic cases:

– Our method can find the suitable constant L.

• In non-ergodic cases:

– If the diffusion coefficient is uniformly bounded on the state space, then our

method can find the suitable constant L.

– If the diffusion coefficient is unbounded Markovian type as in Section 5.4.4,

it is difficult to choose L because of the unstable behavior of the index (5.12).

In the last case, we can exclude the influence of diffusions by using the predictable

Ltni−1
as shown in (5.13) if the diffusion coefficient is known. However there remains a

problem to determine αn; the rate of misjudgments.

The assumptions for Lévy densities in this paper are little restrictive, that is, f(z)

is bounded and continuous. However it is also important in practice to consider Lévy

densities which diverge at the origin and is not integrable as in Chapter 4. In this case,

the construction of new filters would become a major problem.
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5.6 Some moment estimates

In this section, we make the same assumptions as in Theorem 5.2, and we use the

following notations: for fixed z ∈ R
d and q > 0,

kn(z; x) := K

(
z − x

δn

)
, gn,q(z) :=

∫
�d

1

δd
n

Kq

(
z − u

δn

)
f(u) du

K
(1)
i,n,q(z) := kq

n(z; ∆iz
n)1{|∆Xn

i |>Lhρ
n} − kq

n(z; ∆iz
n)1Dn

i,1
,

K
(2)
i,n,q(z) := kq

n(z; ∆iz
n)1Dn

i,1
− kq

n(z; ∆zτn
i
)1Dn

i,1
,

K
(3)
i,n,q(z) := kq

n(z; ∆zτn
i
)1Dn

i,1
− kq

n(z; ∆zτn
i
)1{Jn

i =1},

where τn
i is given in (5.30). Moreover we simply write K

(j)
i,n (z) for K

(j)
i,n,1(z).

We prepare some useful lemmas when we show Theorem 5.1 and 5.2.

Lemma 5.2 For any p, q ≥ 1, it follows that

En
i−1[|K(1)

i,n,q(z)|p] = R(z, h2
n, Xtni−1

), (5.15)

En
i−1[|K(2)

i,n,q(z)|p] = R(z, hp/2+1
n δ−p

n , Xtni−1
), (5.16)

En
i−1[|K(3)

i,n,q(z)|p] = R(z, hρ+1
n , Xtni−1

). (5.17)

Proof． On the equation (5.15), noticing that kn is bounded, we have

En
i−1[|K(1)

i,n,q(z)|p] ≤ Cp,qE
n
i−1[|1Dn

i,0
+ 1Dn

i,2
|p]

≤ Cp,q

(
P n

i−1{Dn
i,0} + P n

i−1{Dn
i,2}

)
= R(z, h2

n, Xtni−1
).

The equation (5.17) is also similarly proved by using Lemma 5.1, that is,

En
i−1[|K(3)

i,n,q(z)|p|] ≤ Cp,qP
n
i−1{Cn

i,1} = R(z, hρ+1
n , Xtni−1

).

On the equation (5.16), applying the mean value theorem to kq
n, we have

En
i−1[|K(2)

i,n,q(z)|p]
≤ CpE

n
i−1

[∣∣δ−1
n ∂xk

q
n(z; z̃)∗∆Xτn

i

∣∣p (∣∣∆Xn
i − ∆Xτn

i

∣∣p + |Xτn
i − −Xtni−1

|p
)

1Dn
i,1

]
,

≤ Cpδ
−1
n En

i−1

[∣∣∆Xτn
i

∣∣p (∣∣∆Xn
i − ∆Xτn

i

∣∣p + |Xτn
i − −Xtni−1

|p
) ∣∣∣Jn

i = 1
]
×

× P{Jn
i = 1},
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where z̃ is a random variable which values between ∆iz
n and ∆zτn

i
. Since

En
i−1

[∣∣∣Xτn
i − −Xtni−1

∣∣∣p 1Dn
i,1

]
≤ En

i−1

[∣∣∣Xτn
i − −Xtni−1

∣∣∣p 1{Jn
i =1}

]
= R(z, hp/2+1

n , Xtni−1
)

by the same argument as for the evaluation of I1 in the proof of Proposition 3.4 in

Chapter 3, and similarly

En
i−1

[∣∣Xtni
−Xτn

i

∣∣p 1Dn
i,1

]
= R(z, hp/2+1

n , Xtni−1
),

we obtain that En
i−1[|K(2)

i,n,q(z)|p] = R(z, h
p/2+1
n δ−p

n , Xtni−1
). �

Lemma 5.3 For any p > 0, it follows that

En
i−1[K

p
δn

(z − ∆iz
n)1{|∆Xn

i |>Lhρ
n}]

= hne
−λhnδ−d(p−1)

n gn,p(z) +R(z, h3/2
n δ−(pd+1)

n , Xtni−1
).

Proof． Notice that

En
i−1[K

p
δn

(z − ∆iz
n)1{|∆Xn

i |>Lhρ
n}]

= δ−pd
n

{
En

i−1[K
(1)
i,n,p(z)] + En

i−1[K
(2)
i,n,p(z)] + En

i−1[K
(3)
i,n,p(z)]

}
+ En

i−1

[
δ−pd
n kp

n(z; ∆zτn
i
)1{Jn

i =1}
]
.

Since (∆zτn
i
, Jn

i ) and F n
i−1 are independent for each i, we see that

En
i−1[K

p
δn

(z − ∆iz
n)1{|∆Xn

i |>Lhρ
n}]

= δ−d(p−1)
n En

i−1

[
E
[
δ−d
n kp

n(s; ∆zτn
i
)|Jn

i = 1
]
1{Jn

i =1}
]

+R(z, h3/2
n δ−(pd+1)

n , Xtni−1
)(
√
hnδn + 1 + δnh

ρ−1/2
n )

= δ−d(p−1)
n P{Jn

i = 1}
∫
�d

1

δd
n

Kp

(
z − u

δn

)
λ−1f(u) du

+R(z, h3/2
n δ−(pd+1)

n , Xtni−1
)(
√
hnδn + 1 + δnh

ρ−1/2
n )

= hne
−λhnδ−d(p−1)

n gn,p(z) +R(z, h3/2
n δ−(pd+1)

n , Xtni−1
). �

Remark 5.8 We can easily obtain the following equalities by the same argument as

above.

En
i−1[K

p
δn

(z − ∆iz
n)1n

Di,1
]
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= hne
−λhnδ−d(p−1)

n gn,p(z) +R(z, h3/2
n δ−(pd+1)

n , Xtni−1
), (5.18)

En
i−1[K

p
δn

(z − ∆zτn
i
)1n

Di,1
]

= hne
−λhnδ−d(p−1)

n gn,p(z) +R(z, h1+ρ
n δ−pd

n , Xtni−1
). (5.19)

We shall omit these proofs.

Lemma 5.4 Let Q(x) be a real valued function defined on R
d which is of polynomial

growth. We set Qj := Q(Xtnj
). Then it follows for any p > 1 and i < j that

En
i−1[Qj−1Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}] = R(z, h1/p
n δ−d

n , Xn
i−1), (5.20)

En
i−1[Qj−1K

(1)
i,n (z)] = R(z, h2/p

n , Xn
i−1), (5.21)

En
i−1[Qj−1K

(2)
i,n (z)] = R(z, h1/2+1/p

n δ−1
n , Xn

i−1), (5.22)

En
i−1[Qj−1K

(3)
i,n (z)] = R(z, h(ρ+1)/p

n , Xn
i−1). (5.23)

Proof． Notice that E[Qj−1|F n
i−1] = R(z, 1, Xn

i−1) by Lemma 3.5 (3.17). Using

Lemma 5.2, 5.3 and Hölder’s inequality, we can obtain that (5.20) - (5.23) by the

straightforward calculation. �

Lemma 5.5 For i < j and arbitrary µ ∈ (0, 1), it follows that

En
i−1

[
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}Kδn(z − ∆zn
j )1{|∆Xn

j |>Lhρ
n}
]

= h2
n

{
e−2λhng2

n,1(z) +R(z, h1/2−µ
n δ−(d+1+µd)

n , Xn
i−1)

}
.

Proof． Since (∆zτn
i
, Jn

i ), (∆zτn
j
, Jn

j ) and F n
i−1 are independent each other for i < j,

we see that

Mn := En
i−1

[
Kδn(z − ∆zτn

i
)1{Jn

i =1}Kδn(z − ∆zτn
j
)1{Jn

j =1}
]

=

{∫
�d

1

δd
n

K

(
z − u

δn

)
λ−1f(u) du · λhne

−λhn

}2

= h2
ne

−2λhng2
n,1(z).

Let Ln := En
i−1

[
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}Kδn(z − ∆zn
j )1{|∆Xn

j |>Lhρ
n}
]
. Then

δd (Ln −Mn) = En
i−1

[
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}E
n
j−1

[
K

(1)
j,n(z)

]]
+ En

i−1

[
En

j−1

[
Kδn(z − ∆zn

j )1Dn
j,1

]
K

(1)
i,n (z)

]
+ En

i−1

[
Kδn(z − ∆iz

n)1Dn
i,1
En

j−1

[
K

(2)
j,n(z)

]]
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+ En
i−1

[
En

j−1

[
Kδn(z − ∆zτn

j
)1Dn

j,1

]
K

(2)
i,n (z)

]
+ En

i−1

[
Kδn(z − ∆zτn

i
)1Dn

i,1
En

j−1

[
K

(3)
j,n(z)

]]
+ En

i−1

[
En

j−1

[
Kδn(z − ∆zτn

j
)1{Jn

j =1}
]
K

(3)
i,n (z)

]
.

From (5.18) and (5.19) with p = 1, we find that

En
j−1

[
Kδn(z − ∆zn

j )1Dn
j,1

]
= R(z, hn, Xtnj−1

),

En
j−1

[
Kδn(z − ∆zτn

j
)1Dn

j,1

]
= R(z, hn, Xtnj−1

),

En
j−1

[
Kδn(z − ∆zτn

j
)1{Jn

j =1}
]

= R(z, hn, Xtnj−1
)

since gn,1(z) is bounded by Bochner’s lemma. Hence we obtain that

Ln −Mn = En
i−1

[
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}R(z, h2
nδ

−d
n , Xtnj−1

)
]

(5.24)

+ En
i−1

[
R(z, hnδ

−d
n , Xtnj−1

)K
(1)
i,n (z)

]
(5.25)

+ En
i−1

[
Kδn(z − ∆iz

n)1Dn
i,1
R(z, h3/2

n δ−(d+1)
n , Xtnj−1

)
]

(5.26)

+ En
i−1

[
R(z, hnδ

−d
n , Xtnj−1

)K
(2)
i,n (z)

]
(5.27)

+ En
i−1

[
Kδn(z − ∆zτn

i
)1Dn

i,1
R(z, hρ+1

n δ−d
n , Xtnj−1

)
]

(5.28)

+ En
i−1

[
R(z, hnδ

−d
n , Xtnj−1

)K
(3)
i,n (z)

]
. (5.29)

On the term (5.26), using Hölder’s inequality and (5.18),

En
i−1

[
Kδn(z − ∆iz

n)1Dn
i,1
R(z, h3/2

n δ−(d+1)
n , Xtnj−1

)
]

≤ Ch3/2
n δ−(d+1)

n

{
En

i−1

[
Kp

δn
(z − ∆iz

n)1Dn
i,1

]}1/p

= R(z, αn, Xtnj−1
)

for any p > 1, where αn = h
3/2+1/p
n δ

−(d+1)−(p−1)d/p
n . Similarly, we can obtain that (5.24)

and (5.28) are also R(z, αn, X
n
i−1) since

R(z, h2
nδ

−d
n , Xtnj−1

) = δnh
1/2
n R(z, h3/2

n δ−(d+1)
n , Xn

i−1),

R(z, hρ+1
n δ−d

n , Xn
i−1) = δnh

ρ−1/2
n R(z, h3/2

n δ−(d+1)
n , Xn

i−1).

Moreover we see that (5.27) is also R(z, αn, X
n
i−1) by (5.22). Therefore, applying lemma

5.4 to (5.25) and (5.29), we have

Ln −Mn = R(z, h1+2/p
n δ−d

n , Xn
i−1) +R(z, h1+(ρ+1)/p′

n δ−d
n , Xn

i−1) +R(z, αn, X
n
i−1)
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= αn{R(z, h1/p−1/2
n δ1+d−1/p

n , Xtni−1
) +R(z, βn, Xtni−1

) +R(z, 1, Xtni−1
)}

for any p, p′ > 1, where βn := α−1
n h

1+(ρ+1)/p′
n δ−d

n . Let 1/p = 1 − µ and (ρ + 1)/p′ =

ρ+ 1 − µ′ for µ, µ′ ∈ (0, 1), then

βn = (hρ−1/2
n δn) · hµ−µ′

n δ1+µd
n .

Hence, if we take µ ≥ µ′ then βn → 0. Consequently,

Ln = Mn +R
(
z, αn, X

n
i−1

)
= Mn + h2

nR(z, h1/2−µ
n δ−(d+1+µd)

n , Xn
i−1).

We can take µ ∈ (0, 1) arbitrary since µ = 1 − 1/p for any p > 1. This completes the

proof. �

5.7 Proofs of the main theorems

5.7.1 Proof of Theorem 5.1

The proof follows the usual way of decomposing the MSE into bias and variance compo-

nents and to show that they converge with optimal rate or faster. Notice the following

decomposition.

E|fT (z) − f(z)|2 = b2T (z) + V fT (z),

where bT (z) = EfT (z) − f(z), V fT (z) = Ef 2
T (z) − {EfT (z)}2.

Note that Nt − λt is Ft-martingale. It follows from Theorem 3.2 in Prakasa Rao

[79] that, for KδT
(z − x) =

1

δd
T

K

(
z − x

δT

)
,

EfT (z) =
1

T
E

[∫ T

0

KδT
(z − ∆zt) dNt

]

=
λ

T

∫ T

0

E
[
KδT

(z − ∆zt)
∣∣ |∆zt| > 0

]
dt

=
1

δd
T

∫
�d

K

(
z − u

δT

)
λF (u) du

=

∫
�d

K(v)f(z − δTv) dv.

As m �= 0, by the same argument as in the proof of Theorem 4.1 in Bosq [10], we easily

obtain that

|bT (z)| ≤ c(r,m)δ
m+l
T ,
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where c(r,m) =
∑

j1+···+jd=m
�

j1!...jd!

∫
�d |u|l|u1|j1 . . . |ud|jd|K(u)| du. Moreover, as m = 0,

|bT (z)| ≤
∫
�d

K(v)|f(z − δTv) − f(z)| dv

≤ �

∫
�d

K(v)|δTv|l dv
≤ c(r,0)δ

l
T .

Hence, for m ≥ 0,

Tδd
T b

2
T (z) ≤ Tδ2r+d

T c2(r,m) = η2r+d
T c2(r,m).

Noticing Tδd
T = T

2r
2r+dηd

T , we have T
2r

2r+d b2T (z) ≤ η2r
T c

2
(r,m).

The variance term V fT is dominated from above as follows:

V fT (z) = E

∣∣∣∣ 1T
∫ T

0

∫
�d

KδT
(z − ζ) (p− q)(dt, dζ)

∣∣∣∣
2

=
1

T 2δd
T

∫ T

0

λ

δd
T

K2

(
z − ζ

δT

)
F (ζ) dζdt

≤ 1

Tδd
T

sup
z∈�d

|f(z)|
∫
�d

K2(u) du.

This completes the proof. �

5.7.2 Proof of Theorem 5.2

The proof is analogous to that of Theorem 5.1. We notice the following decomposition:

E|fn(z) − f(z)|2 = (Efn(z) − f(z))2 + Ef 2
n(z) − (Efn(z))2

=: b2n + V fn,

where bn(z) = Efn(z)−f(z) and V fn(z) = Ef 2
n(z)−(Efn(z))2. We define the stopping

time τn
i as

τn
i := inf

{
t ∈ [tni−1, t

n
i ); |∆zt| > 0

}
, (5.30)

and let bn = b
(1)
n + b

(2)
n + b

(3)
n , where

b(1)
n (z) = Efn(z) − 1

Tn

n∑
i=1

E
[
Kδn(z − ∆zτn

i
)1{Jn

i =1}
]
,

b(2)
n (z) =

1

Tn

n∑
i=1

E
[
Kδn(z − ∆zτn

i
)1{Jn

i =1}
]− 1

Tn

n∑
i=1

λ−1f(z)P{Jn
i = 1},
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b(3)
n (z) =

1

Tn

n∑
i=1

λ−1f(z)P{Jn
i = 1} − f(z).

On b
(1)
n (z), applying Lemma 5.2 with p = 1, we have

sup
z∈�d

|b(1)
n (z)| ≤ 1

Tnδd
n

n∑
i=1

sup
z∈�d

E
[∣∣∣kn(z; ∆iz

n)1{|∆Xn
i |>Lhρ

n
} − kn(z; ∆zτn

i
)1{Jn

i =1}
∣∣∣]

≤ 1

Tnδd
n

n∑
j=1

3∑
r=1

sup
z∈�d

E
∣∣∣K(r)

i,n (z)
∣∣∣

=
√
hnδ

−(d+1)
n

{
O(1) +O(δnh

ρ−1/2
n )

}
= O(

√
hnδ

−(d+1)
n ),

where kn and K
(r)
i,n (r = 1, 2, 3) are given in Section 5.6. Therefore

Tnδ
d
n sup

z∈�d

{b(1)n }2 = O
(
η−(2r+d)

n (Tnh
1/2
n δr−1

n )2
) → 0.

On b
(2)
n (z),

b(2)n (z) =
1

Tn

n∑
i=1

∫
�d

Kδn(z − u)λ−1f(u) du× P{Jn
i = 1}

− 1

Tn

n∑
i=1

λ−1f(z)P{Jn
i = 1}

=
1

Tn

n∑
i=1

hne
−λhn

{∫
�d

Kδn(z − u)f (u) du− f(z)

}

= e−λhn

∫
�d

K(v){f(z − δnv) − f(z)} dv.

As m �= 0, applying Taylor’s formula to f ,

b(2)
n (z) = e−λhnδm

n

∫
�d

K(v)
∑

j1+···+jd=m

vj1
1 . . . vjd

d

j1! . . . jd!

∂f (m)

∂zj1
1 . . . ∂zjd

d

(z − θδnv) dv,

where 0 < θ < 1. Hence, by the same argument as in the proof of Theorem 4.1 in Bosq

[10],

Tnδ
d
n sup

z∈�d

{b(2)n (z)}2 ≤ η2r+d
n η2

(r,m). (5.31)

where η(r,m) =
∑

j1+···+jd=m
�

j1!...jd!

∫
�d |u|l|u1|j1 . . . |ud|jd|K(u)| du. Moreover, as m = 0,

we can obtain (5.31) with m = 0 by the same argument as in the proof of Theorem

5.1.
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On b
(3)
n (z),

sup
z∈�d

|b(3)n (z)| = sup
z∈�d

∣∣∣∣∣ 1

Tn

n∑
i=1

hne
−λhnf(z) − f(z)

∣∣∣∣∣
= sup

z∈�d

|f(z)| ∣∣e−λhn − 1
∣∣

= O(hn).

This implies that Tnδ
d
n supz∈�d{b(3)

n (z)}2 = O
(
(Tnh

ν
n)h2−ν

n δd
n

) → 0. Clearly, the cross

terms from b
(1)
n to b

(3)
n converge zero at rate Tnδ

d
n uniformly in z. Hence,

lim sup
n→∞

T
2r

2r+d
n sup

z∈�d

b2n(z) ≤ η2r · η(r).

Next, let us consider the term V fn. We can decompose V fn as V fn := Vn + Cn,

where

Vn(z) =
1

T 2
n

n∑
i=1

V ar (Kδn(z − ∆iz
n)) 1{|∆Xn

i |>Lhρ
n},

Cn(z) =
1

T 2
n

∑
1≤i�=j≤n

Cov
(
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}, Kδn(z − ∆zn
j )1{|∆Xn

j |>Lhρ
n}
)
.

On Vn(z), applying lemma 5.3, we have

Vn(z) =
1

T 2
n

n∑
i=1

{
E
[
K2

δn
(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}
]

−
(
E
[
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}
])2 }

=
1

Tnδd
n

(
gn,2(z) + Ch1/2

n δ−(d+1)
n

)
.

where gn,p (p > 0) is given in Section 5.6.

On Cn(z), noticing that

Cov
(
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}, Kδn(z − ∆zn
j )1{|∆Xn

j |>Lhρ
n}
)

= E
[
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}Kδn(z − ∆zn
j )1{|∆Xn

j |>Lhρ
n}
]

−E
[
Kδn(z − ∆iz

n)1{|∆Xn
i |>Lhρ

n}
]
E
[
Kδn(z − ∆zn

j )1{|∆Xn
j |>Lhρ

n}
]
,

and applying lemma 5.5 to the first term and lemma 5.3 to the second term in the

right-hand side, we easily obtain supz∈�d |Cn(z)| = O(h
1/2−µ
n δ

−(d+1+µd)
n ) for arbitrary

µ ∈ (0, 1). Hence,

Tnδ
d
n sup

z∈�d

V fn(z)
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= sup
z∈�d

gn,2(z) +O
(
h1/2

n δ−(d+1)
n

)
+O

(
Tnh

1/2−µ
n δ−1−µd

n

)
= sup

z∈�d

gn,2(z) +O
(
η−(2r+d)

n δ2r−1
n Tnh

1/2
n

)
+O

(
Tnh

1/2−µ
n T (1+µd)/(2r+d)

n

)
≤ sup

z∈�d

|f(z)|
∫
K2(u) du+O

(
δ2r−1
n Tnh

1/2
n

)
+O

(
T

2r+d+1+µd
2r+d

n h
1
2
−µ

n

)
.

The last two terms in the last right-hand side tends to zero if we take µ ∈ (0, 1)

arbitrary small. Actually, δ2r−1
n Tnh

1/2
n = (Tnh

1/2
n δr−1

n )δr
n → 0 and

T
2r+d+1+µd

2r+d
n h

1
2
−µ

n = (Tnh
ν
n)

2r+d+1+µd
2r+d h

1
2
− 2r+d+1+µd

2r+d
ν−µ

n

whose last index 1
2
− 2r+d+1+µd

2r+d
ν−µ can be positive if we take µ sufficiently small since

0 < ν < 2r+d
2(2r+d+1)

. As a result, we have

Tnδ
d
n sup

z∈�d

V fn(z) ≤ sup
z∈�d

|f(z)|
∫
K2(u) du+ o(Tnh

ν
n). (5.32)

This completes the proof. �





Chapter 6

Practical inference from finite

samples

As we have seen until the previous chapter, when we consider the inference for jump-

type processes, it is useful to take the information of jumps and the information of

continuous transition separately. For that purpose, we made use of the filter such

as {|∆iX
n| ≤ Lhρ

n} for the inference for jump-diffusions from sampled data, and we

showed that this filter gave a good judgement if jump had occurred or not asymptoti-

cally. However, as we already saw in Section 5.4.2, this filter did not work well without

selecting the constants L and ρ suitably under some practical situations where the

sample size n was fixed. Therefore we proposed some intuitive methods to improve the

performance of the estimation. In this chapter, we discuss how to construct the filter

depending on the fixed sample size from a more theoretical point of view.

6.1 Asymptotic filter and its problem

Our essential idea in Chapter 3 - 5 is to use the size of |∆iX
n| in order to judge the

existence of a jump in the interval [tni−1, t
n
i ]. For that purpose, we used the jump-

judgment filter of the form

H n
i = {ω ∈ Ω ; |∆iX

n| > Lhρ
n} , ρ ∈ (0, 1/2). (6.1)

The key result to show the validity to use such a filter was Lemma 3.2, 4.1 or 5.1.

However, as pointed out in Section 5.4.2, the accuracy of the judgment of jumps

for given L and ρ depends on the sample size n and the each model, especially the

diffusion coefficient and the distribution of jumps. That is, when we fix the constant

149
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L and ρ independent of the sample size n then the filter does not work well in some

models.

Although we already show some examples where the filter does not work well in

Section 5.4, we shall show again an another numerical experiment. Consider an one-

dimensional SDE as follows.

dXt = −µXt dt+
√
σ dwt + z

(λ,θ)
t ,

where z(λ,θ) is a compound Poisson process with the Lévy density

f(z) = λ(2πθ2)
−1/2e−(z−θ1)2/(2θ2);

the normal type density with parameters λ, θ = (θ1, θ2). Set the true value of parame-

ters except for σ as follows.

(µ, θ1, θ2, λ) = (0.3, 0.5, 0.1, 3.0),

and consider the two models as σ = 0.1 and σ = 0.3. We estimate the parameter

(µ, σ, θ1, θ2, λ) jointly from discrete observations Xn = (Xtn0
, Xtn1

, . . . , Xtnn), where tni =

ihn for i = 0, 1, . . . , n, via the method of Chapter 3 with a slight extension to the case

where the Lévy density is bounded around the origin. In the following simulation, we

set hn = n−0.8 and ρ = 0.49.

In the case where σ = 0.1, we first set L = 1.0 and obtained Tab. 6.1. From

this result, one might think that the filter works well. This is because the diffusion

parameter σ is relatively small compared with jump sizes, and there is only a few

misjudgments. However, as σ = 0.3, we obtained a result as in Tab. 6.2. The estimator

θ̂1 behaves strange, and λ̂ is overestimated with the standard deviation increases. This

is because the filter misjudges the jumps, especially it overestimates the jump’s number.

This simulation indicates that the asymptotic theory does not work yet, and the sample

size n needs being larger. In order to improve the performance of the estimation, we

change the value L = 1.0 to a suitable one. Here we chose L = 1.8, and the result is

shown in Tab. 6.3. Then the result were dramatically improved.

These results indicate that we need to select the constant L (and of course ρ, too)

according to the model and the sample size n.

In Chapter 5, we left a constant L in the threshold to describe some intuitive

procedures for selecting the filter. However there is no theoretical reason to separate L

and hρ
n generally as pointed out in Remark 5.3. Therefore, in this chapter, we rewrite

the filter simply as

H n
i (rn) = {ω ∈ Ω ; |∆iX

n| > rn} , (6.2)
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n 50 500 3000 TRUE

σ = 0.1 µ̂ 0.2702 0.3009 0.3013 0.3

L = 1.0 s.d. 0.1474 0.0477 0.0277

σ̂ 0.1169 0.1003 0.0998 0.1

s.d. 0.0295 0.0066 0.0025

θ̂1 0.6450 0.5408 0.5135 0.5

s.d. 0.1294 0.0745 0.0558

θ̂2 0.0919 0.0924 0.0956 0.1

s.d. 0.0886 0.0495 0.0269

λ̂ 2.0659 2.6893 2.9067 3.0

s.d. 0.7266 0.6514 0.5076

Tab. 6.1: The mean and the standard deviation (s.d.) of estimators over 500 times

iterations.

n 50 500 3000 TRUE

σ = 0.3 µ̂ 0.2358 0.2528 0.2536 0.3

L = 1.0 s.d. 0.2366 0.0809 0.0428

σ̂ 0.2310 0.2381 0.2471 0.3

s.d. 0.0433 0.0133 0.0054

θ̂1 0.4505 0.2230 0.1108 0.5

s.d. 0.0151 0.0522 0.0162

θ̂2 0.2131 0.1445 0.0839 0.1

s.d. 0.1178 0.0331 0.0162

λ̂ 2.7419 5.7280 11.453 3.0

s.d. 0.8759 0.9882 1.0682

Tab. 6.2: The mean and the standard deviation (s.d.) of estimators over 500 times

iterations.
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n 50 500 3000 True

σ = 0.3 µ̂ 0.2001 0.2977 0.3010 0.3

L = 1.8 s.d. 0.2366 0.0866 0.0428

σ̂ 0.3902 0.3044 0.2978 0.3

s.d. 0.0901 0.0191 0.0074

θ̂1 0.7517 0.5750 0.5147 0.5

s.d. 0.1879 0.0800 0.0552

θ̂2 0.2014 0.0965 0.1002 0.1

s.d. 0.2054 0.0531 0.0279

λ̂ 1.5156 2.4717 2.8938 3.0

s.d. 0.6450 0.5881 0.4682

Tab. 6.3: The mean and the standard deviation (s.d.) of estimators over 500 times

iterations.

and consider the selection problem of not L but rn itself, which is the most important

parameter in applications.

In the next section, we discuss what kind of rn is suitable to improve the perfor-

mance for fixed n.

6.2 A criterion for selecting the filter

Throughout this chapter, we consider the following d-dimensional SDE with jumps on

a filtered probability space (Ω,F , (Ft)t≥0, P ):

dXt = a(Xt) dt+ b(Xt) dwt + dzt, X0 = x, (6.3)

where x is an R
d-valued random variable, a and b are respectively R

d and R
d ⊗ R

m-

valued measurable functions defined on R
d, w is an m-dimensional Wiener process, z

is an R
d-valued compound Poisson process of the form zt =

∑Nt

i=1 εi and N is a Poisson

process with intensity parameter λ (≥ 0), εi’s (i ∈ N) are R
d-valued random variables

satisfying P{εi ∈ A} =
∫

A
F (z) dz for any A ⊂ R

d, and we put f(z) = λF (z). If z

has a jump εi at the time τi then |∆Xτi
| > 0 a.s., where ∆Xt := Xt − Xt− for any

t ≥ 0. We assume that w, N and εi’s are independent each other, and that (6.3) has

a solution.

Such a model is often used in financial literatures to model the dynamics of as-

set returns, index returns, exchange rates, interest rates, insurance risks, and so on.

Therefore to determine the good threshold of the filter is important problem in practice.
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Notice that, in a time interval (s1, s2] where any jump does not occur, X is a

solution to the following stochastic integral equation:

α
(s1)
t = Xs1 +

∫ t

s1

a(α(s1)
u ) du+

∫ t

s1

b(α(s1)
u ) dwu. (6.4)

The statistics

λ̂n(rn) =
1

nhn

n∑
i=1

1H n
i (rn) (6.5)

is an estimator of the Poisson intensity of jumps over [0, 1] time interval. It is shown

in Shimizu [94] that this estimator was consist to λ unless X is ergodic, and it is

easily found that (6.5) is asymptotically unbiased, that is, E[λ̂n(rn)] → λ as n tends

to infinity. Therefore it is desired that, at least, the bias of the estimator λ̂n(rn) for

largely fixed n is as small as possible.

Let us estimate the following expectation analytically:

E
[
λ̂n(rn)

]
=

1

nhn

n∑
i=1

P {H n
i (rn)} =

1

nhn

n∑
i=1

P {|∆iX
n| > rn} .

In the sequel, we use the following notations:

ε(rn) :=
1

n

n∑
i=1

P
{|∆iα

n(tni−1)| > rn

}
, (6.6)

δ(rn, A) :=
1

n

n∑
i=1

P
{|Sn

i (τ)| > rn

∣∣{Jn
i = 1} ∩ A} (6.7)

for A ∈ F , where ∆iα
n(tni−1) = α

(tni−1)

tni
−α

(tni−1)

tni−1
and Sn

i (τ) = (α
(τn

i )
tni

−α
(τn

i )
τn
i

) + (α
(tni−1)

τn
i − −

α
(tni−1)

tni−1
), τn

i = inf{t ∈ (tni−1, t
n
i ]; |∆Xt| > 0} and Jn

i := #{t ∈ (tni−1, t
n
i ] ; |∆Xt| > 0}.

Lemma 6.1 For any integer n, it follows that

E
[
λ̂n(rn)

]
= h−1

n ε(rn)e−λhn + (1 − δ(rn, |∆zτn
i
| > 2rn))e−λhn

∫
|z|>2rn

f(z) dz

+ Tn + Un + en,

where en, Tn and Un are sequences satisfying the following inequalities, respectively:

0 ≤ en ≤ λ2hn,

0 ≤ eλhnTn ≤
∫
|z|>2rn

f(z) dz · δ(rn, |∆zτn
i
| > 2rn),

0 ≤ eλhnUn ≤
∫

rn
2

<|z|≤2rn

f(z) dz + δ
(rn

2
, |∆zτn

i
| ≤ rn

2

)∫
|z|≤ rn

2

f(z) dz.
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Proof． Notice the following decomposition:

E
[
λ̂n(rn)

]
=

1

nhn

n∑
i=1

[
P {H n

i (rn) ∩ {Jn
i = 0}} + P {H n

i (rn) ∩ {Jn
i = 1}}

+ P {H n
i (rn) ∩ {Jn

i ≥ 2}} ]. (6.8)

Let the last term be en then it follows from the Poisson property that

en :=
1

nhn

n∑
i=1

P {H n
i (rn) ∩ {Jn

i ≥ 2}}

≤ 1

nhn

n∑
i=1

P {Jn
i ≥ 2} ≤ λ2hn. (6.9)

Since dXt = dα
(tni−1)

t in (tni−1, t
n
i ] on the set {Jn

i = 0}, we have on the first term of (6.8)

that

P {H n
i (rn) ∩ {Jn

i = 0}} = e−λhnP
{|∆iα

n(tni−1)| > rn

}
.

It remains to estimate the second term of (6.8). Noticing that

Sn
i (τ) = (Xtni

−Xτn
i
) + (Xτn

i − −Xtni−1
)

on {Jn
i = 1}, we obtain the following decomposition.

P {H n
i (rn) ∩ {Jn

i = 1}}
= P

{|Sn
i (τ) + ∆zτn

i
| > rn, |∆zτn

i
| > 2rn, J

n
i = 1

}
+ P

{|Sn
i (τ) + ∆zτn

i
| > rn, |∆zτn

i
| ≤ 2rn, J

n
i = 1

}
≤ P

{|Sn
i (τ)| ≤ rn, |∆zτn

i
| > 2rn, J

n
i = 1

}
(6.10)

+ P
{|Sn

i (τ) + ∆zτn
i
| > rn, |Sn

i (τ)| > rn, |∆zτn
i
| > 2rn, J

n
i = 1

}
(6.11)

+ P
{
|Sn

i (τ) + ∆zτn
i
| > rn,

rn

2
< |∆zτn

i
| ≤ 2rn, J

n
i = 1

}
(6.12)

+ P
{
|Sn

i (τ) + ∆zτn
i
| > rn, |∆zτn

i
| ≤ rn

2
, Jn

i = 1
}
. (6.13)

Putting (6.10)～(6.13) as An
i , B

n
i , C

n
i and Dn

i respectively, we have

An
i = λhne

−λhn

∫
|z|>2rn

F (z) dz · P {|Sn
i (τ)| ≤ rn

∣∣|∆zτn
i
| > 2rn, J

n
i = 1

}
,

Bn
i ≤ λhne

−λhn

∫
|z|>2rn

F (z) dz · P {|Sn
i (τ)| > rn

∣∣|∆zτn
i
| > 2rn, J

n
i = 1

}
,

Cn
i ≤ λhne

−λhn

∫
rn
2

<|z|≤2rn

F (z) dz,
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Dn
i ≤ λhne

−λhn

∫
|z|≤ rn

2

F (z) dz · P
{
|Sn

i (τ)| > rn

2

∣∣∣|∆zτn
i
| ≤ rn

2
, Jn

i = 1
}
.

Then we obtain the consequence by putting as follows:

Tn =
1

nhn

∑
i=1

Bn
i ,

Un =
1

nhn

n∑
i=1

(Cn
i +Dn

i ) .

This completes the proof. �

According to this lemma, we can give an intuitive explanation to the curve of λ̂n(rn)

in Fig. 5.4 in Chapter 5. First, let us observe the behavior of E
[
λ̂n(rn)

]
as rn ↑ ∞

under n is fixed; which corresponds to that L→ ∞ in (6.1). Since

ε(rn) ↓ 0, δ(rn, |∆zτn
i
| > 2rn) + δ

(rn

2
, |∆zτn

i
| ≤ rn

2

)
↓ 0,∫

rn
2
≤|z|≤2rn

f(z) dz +

∫
|z|>2rn

f(z) dz ↓ 0

as rn ↑ ∞, we find that E
[
λ̂n(rn)

]
→ 0. Intuitively speaking, this phenomenon is

natural since the filter can hardly catch jumps if rn is too large.

Next, let us consider the case where rn ↓ 0 under n is fixed. In this case, it follows

from ε(rn), δ(rn) ↑ 1 and U(rn) ↓ 0 that

E
[
λ̂n(rn)

]
→ h−1

n e−λhn + lim
rn→0

T (rn) ≈ h−1
n + λ.

Therefore E
[
λ̂n(rn)

]
has the large bias by the influence of the term h−1

n ε(rn)e−λhn as

rn is too small. Particularly the term h−1
n becomes enormously large if n is large.

6.3 A bias correction

Let b(rn) be the exact bias of λ̂n(rn), that is,

b(rn) := E
[
λ̂n(rn)

]
− λ. (6.14)

Our goal is to select an rn which minimizes the absolute bias |b(rn)|. However it would

be difficult to estimate the exact bias directly, and what we show here is the upper and

the lower bound of the bias. We easily obtain the following theorem from the previous

lemma.
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Theorem 6.1 Define �̃n and �n as follows.

�̃n := h−1
n ε(rn) −

∫
|z|<2rn

f(z) dz,

�n := �̃n +

∫
rn
2

<|z|≤2rn

f(z) dz.

Then it follows that

�̃n +O(δ̃n ∨ hn) ≤ eλhnb(rn) ≤ �n +O(δ̃n ∨ hn) (6.15)

as hn → 0, where δ̃n = δ(rn, |∆zτn
i
| > 2rn) ∨ δ (rn/2, |∆zτn

i
| ≤ rn/2

)
.

Proof． This is the direct result from Lemma 6.1 and the fact λ =
∫
�d f(z) dz. �

Roughly speaking, we can regard �n and �̃n as the terms of the first order of the

upper and the lower bound, respectively since hn∨ δ̃n → 0 as n→ ∞ under rn ∼ hρ
n for

ρ < 1/2, which follows from (3.11). For these bounds, it is desired that the amplitude

of the bias |�̃n − �n|, which corresponds to a kind of variance, is as small as possible

from the aspect of stability of the estimated bias. Therefore the threshold rn should

be selected so that |�̃n − �n| ≈ 0. On the other hand, if we concentrate only on

minimizing the distance |�̃n − �n| then �̃n might be strictly positive, or �n might be

strictly negative, which induce strictly biased estimators. Therefore the center of the

interval [�̃n, �n] should be nearly to zero in order to make the maximum of the absolute

bias small as possible; the aspect of unbiasedness. Therefore rn should also be selected

so that (�̃n + �n) ≈ 0. From these points of view, it would be natural to select rn which

minimizes the following quantity:

(1 − u)|�̃n + �n| + u|�̃n − �n| (0 ≤ u < 1),

The weight u should not be 1 since rn = 0 or ∞ is clearly selected in this case and

each of them does not play a role as the filter. Therefore it is convenient to rewrite it

as follows.

Ln,w(rn) := |�̃n + �n| + w|�̃n − �n|
= |L(rn)| + w

∫
rn
2

<|z|≤2rn

f(z) dz,

for w ≥ 0, where L(rn) = 2h−1
n ε(rn)−J (rn), J (rn) =

∫
|z|≤ rn

2
f(z) dz+

∫
|z|<2rn

f(z) dz.

We would like to select rn which minimize the function Ln,w(rn), though it is still the

unknown function.
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Definition 6.1 We denote by r
(n,w)
opt a minimizer of the function Ln,w(r):

r
(n,w)
opt := arg min

r≥0
Ln,w(r).

It is easy to see that r
(n,w)
opt is well defined for any n and w from the form of Ln,w(r).

A constant w is the weight on the amplitude of the bias; |�̃n − �n|. Setting w as

being large implies that one puts weight on not the unbiased estimation but the stable

estimation, and too large w can induce the definitely positive or negative bias. Since

we do not obtain the exact bias but only less strict bounds from both sides, the aspect

of unbiasedness should be weighted on rather than compulsory minimization of the

bias range. Moreover, from the technical point of view, it is not necessarily that r
(n,w)
opt

is determined uniquely if w > 1. Actually, if w → ∞ then the selected threshold would

tend to zero or infinity as already pointed out. Therefore it would not be suitable to

choose large w, and be suitable that w = 1 if we have no prior information about the

true bias.

In application, if we restrict w ∈ [0, 1] then r
(n,w)
opt is unique and independent of w

as the next lemma shows. The lemma implies that, if 0 ≤ w ≤ 1, minimizing Ln,w is

equivalent to finding the unique root of L(r) = 0.

Lemma 6.2 If 0 ≤ w ≤ 1 then r
(n,w)
opt is the unique solution to the equation L(r) = 0,

that is, r
(n,w)
opt is independent of w ∈ [0, 1].

Proof． Note that

Ln,w(r) =

{
2h−1

n ε(r) −Jw(r) if L(r) ≥ 0

J−w(r) − 2h−1
n ε(r) if L(r) ≤ 0

,

where Jw(r) = J (r)−w ∫
r
2
<|z|≤2r

f(z) dz. We see that the function Jw̃(r) is increasing

in r for each w̃ ∈ [−1, 1] since we can rewrite Jw̃ as follows.

Jw̃(r) = (1 + w̃)

∫
|z|≤ r

2

f(z) dz + (1 − w̃)

∫
|z|<2r

f(z) dz.

Hence, both the function l1(r) := 2h−1
n ε(r)−Jw(r) and the function l2(r) := 2h−1

n ε(r)−
J−w(r) are decreasing in r ≥ 0 for each w ∈ [0, 1]. Similarly, the function L(r) is also

decreasing. Moreover the equation L(r) = 0 has the unique root since ε(r) is decreasing

in r ≥ 0 and ε(0) = 1, lim
r→∞

ε(r) = 0, and J (r) is increasing in r ≥ 0 with J (0) = 0.

From these facts, it follows that l1 is minimized at r0 := max{r ≥ 0 ; L(r) ≥ 0} on

the closed set {r ≥ 0 ; L(r) ≥ 0} ⊂ [0,∞), and also

r0 = arg minL(r) on {r ≥ 0 ; L(r) ≥ 0},
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that is, L(r0) = 0. Similarly, we can show that l2 is maximized at r′0 satisfying L(r′0) =

0. Consequently we obtain that r0 = r′0 = r
(n,w)
opt . �

In the sequel, we consider the case where w ∈ [0, 1]. Under this assumption we put

r
(n)
opt := r

(n,w)
opt (6.16)

for simplicity. Then our interest is to find the solution r
(n)
opt to the equation

L(r) = 2h−1
n ε(r) − J (r) = 0. (6.17)

The equation (6.17) includes the unknown quantities ε and f . Therefore we have

to substitute ε and f by some suitable estimators in order to make an estimator of

r
(n)
opt . However they must be constructed by the filter which should be selected in our

goal, so it goes back and forth!

In the next section, we propose a plug-in method in order to avoid this dilemma,

and we show the performance of the method in some simulations.

6.4 Direct plug-in method

6.4.1 Plug-in rule

The goal of this section is to estimate the threshold r
(n)
opt from finitely fixed n. For that

purpose, we have to construct an estimator of L(r).

As a general notation, we denote by Ĝn(x; rn) an estimator of a function G(x)

constructed by the data {Xtni
}n

i=0 and the filter H n
i (rn). Using this notation, the

natural estimator of J is written as

Ĵn(r; rn) =

∫
|z|≤ r

2

f̂n(z; rn) dz +

∫
|z|≤2r

f̂n(z; rn) dz. (6.18)

Let us consider an 1-dimensional case of X for simplicity. In order to calculate the

above integrals easily, it is convenient to use

f̂n(z; rn) :=
1

nh1+δ
n

n∑
i=1

φ

(
z − ∆iX

n

hδ
n

)
I (H n

i (rn)) (6.19)

proposed in Shimizu [92], where δ ∈ (0, 1/2) is a constant, φ is the standard nor-

mal kernel, i.e. φ(z) = 1√
2π
e−z2/2. On the other hand, the natural approximation

of the εn(rn) = 1
n

∑n
i=1 P

{|∆iα
n(tni−1)| > rn

}
for diffusion (6.4) is the local-Gaussian
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approximation of the transition probability of α(tni−1), that is, for ai−1 = a(Xtni−1
) and

βi−1 = b2(Xtni−1
),

ε(rn) ≈ 1

n

n∑
i=1

∫
|y|>rn

1√
2π|βi−1|hn

exp

(
− 1

2hnβi−1
(y − hnai−1)

2

)
dy

≈ 1

n

n∑
i=1

∫
|y|>rn

1√
2π|βi−1|hn

exp

(
− y2

2hnβi−1

)
dy. (6.20)

Substituting the β by the estimator β̂n(Xtni−1
; rn), we have

ε̂n(r; rn) =
1

n

n∑
i=1

∫
|y|>rn

1√
2π|β̂n(Xtni−1

; rn)|hn

exp

(
− y2

2hnβ̂n(Xtni−1
; rn)

)
dy. (6.21)

We note that the above procedure is easily applied to the multidimensional case.

Now let us proceed the algorithm to find the approximator of r
(n)
opt . The following

Plug-in method is executable:� �
Step 0. Choose the pilot threshold r

(0)
n > 0 arbitrarily.

Step k (≥ 1). Solve the equation

L̂n(r; r(k−1)
n ) := 2h−1

n ε̂n(r; r(k−1)
n ) − Ĵn(r; r(k−1)

n ) = 0 · · · (∗)

and define the root as r = r
(k)
n .

Iterate Step k (k = 1, 2, . . . ) until the sequence {r(k)
n }k∈� converges.

� �
We call the kth solution to the equation (∗) the k-stage threshold, and call the

function L̂n(r; r
(k−1)
n ) the k-stage threshold selector. By the same argument as in Lemma

6.2, we see that the equation L̂n(r; r
(k−1
n ) = 0 has the unique solution r

(k)
n for any k

and n ∈ N.

We expect that lim
k→∞

r(k)
n exists and that the limit is near the r

(n)
opt in some sense.

Before the theoretical study, we try this algorithm by simulations.

6.4.2 Simulation results

Let us show the performance of our threshold selector L̂n using (6.19) and (6.21).

We consider an one-dimensional data generating process as follows.

dXt = −µXt dt+ σ dwt + dzt,
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where z is a compound Poisson process with the Lévy density f(z) = λ√
2π
e−

z2

2 , and

the true parameter is (µ, σ, λ) = (0.03, 0.3, 15.0).

For fixed n, the experiment is done as follows.

(1) Choose the pilot threshold as r
(0)
n = 1.0.

(2) Observe one path of X at the time tni = ihn, where hn = n−0.8.

(3) Calculate 1 to 7-stage thresholds solving L̂n(r; r
(k−1)
n ) = 0 (k = 0, 1, . . . , 6) and

the estimator of (µ, σ, λ) in each stages as follows; see Definition 3.1 and Remark

3.2.

µ̂(k)
n =

∑n
i=1 ∆iX

nXtni−1
1{|∆iXn|≤r

(k)
n }∑n

i=1X
2
tni−1

h2
n1{|∆iXn|≤r

(k)
n }

σ̂(k)
n =

{∑n
i=1(∆iX

n − µ̂nXtni−1
hn)21{|∆iXn|≤r

(k)
n }

hn

∑n
i=1 1{|∆iXn|≤r

(k)
n }

}1/2

λ̂(k)
n =

1

nhn

n∑
i=1

1
H n

i (r
(k)
n )

The experiment (1)-(3) is iterated 500 times. Table 6.4-6.6 below are the sample mean

and the sample standard deviation (s.d.) in each stages throughout 500 iterations. The

values in the last line are r
(n)
opt and the true values of each parameter.

These results show that our threshold selector can find the r
(n)
opt approximately as

a limit of the k-stage threshold, and as a result, the parameters are estimated well.

Although we do not know yet if the k-stage threshold can theoretically converge to a

positive constant, we can easily imagine that r
(k)
n stops absolutely after several stages

in applications, where only one sample path of X is available and the sample size n is

fixed. Because, if r
(k)
n goes to near the r

(n)
opt then the difference |r(k)

n − r
(k+1)
n | is getting

small, consequently, the estimated jump’s number Ik := #{i ; |∆iX
n| > r

(k)
n } is not

updated, that is, Ik = Ik+1 for sufficiently large k. As a result, the estimators ε̂n and

f̂n are not updated either. This leads that r
(k)
n = r

(k+1)
n . Actually the variance of the

last stage threshold is sufficiently small, and it indicates that we can always select the

good threshold uniquely.

In this simulation, we chose the pilot threshold as r
(0)
n = 1.0, but we can check that

any other choice of pilot threshold which satisfies that 0 < r
(0)
n < max1≤i≤n |∆iX

n| can

also leads the similar results.
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n = 1000 r
(k)
n λ̂

(k)
n µ̂

(k)
n σ̂

(k)
n

0-stage 1.0 4.68 -0.11718 1.74590

s.d. 0.0 1.082 0.319 0.186

1-stage 0.36071 10.52 -0.04073 0.51620

s.d. 0.0336 1.471 0.079 0.077

2-stage 0.09943 13.40 -0.03253 0.30624

s.d. 0.0136 1.663 0.050 0.009

3-stage 0.05836 14.38 -0.03089 0.29766

s.d. 0.0020 1.835 0.049 0.007

4-stage 0.05599 14.66 -0.03052 0.29619

s.d. 0.0020 1.946 0.048 0.007

5-stage 0.05551 14.72 -0.03043 0.29589

s.d. 0.0019 1.986 0.048 0.007

6-stage 0.05540 14.74 -0.03042 0.29582

s.d. 0.0019 2.004 0.048 0.007

7-stage 0.05540 14.74 -0.03037 0.29582

s.d. 0.0019 2.004 0.048 0.007

r
(n)
opt/True 0.05560 15.0 -0.03 0.3

Tab. 6.4: The 1st-7th thresholds as the sample size n = 1000. Each estimator is the

mean over the 300 times iterations and s.d. is the standard deviation of them.
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n = 3000 r
(k)
n λ̂

(k)
n µ̂

(k)
n σ̂

(k)
n

0-stage 1.0 4.77 -0.09615 1.74004

s.d. 0.0 0.995 0.257 0.173

1-stage 0.26503 11.73 -0.03510 0.40342

s.d. 0.0238 1.436 0.048 0.038

2-stage 0.05592 14.16 -0.03331 0.30113

s.d. 0.0048 1.702 0.037 0.004

3-stage 0.04098 14.80 -0.03315 0.29901

s.d. 0.0008 1.851 0.037 0.004

4-stage 0.04036 14.90 -0.03291 0.29874

s.d. 0.0008 1.883 0.037 0.004

5-stage 0.04028 14.92 -0.03288 0.29870

s.d. 0.0008 1.887 0.037 0.004

6-stage 0.04027 14.92 -0.03288 0.29870

s.d. 0.0008 1.888 0.037 0.004

7-stage 0.04027 14.92 -0.03288 0.29870

s.d. 0.0008 1.888 0.037 0.004

r
(n)
opt/True 0.04016 15.0 -0.03 0.3

Tab. 6.5: The 1st-7th thresholds as the sample size n = 3000. Each estimator is the

mean over the 300 times iterations and s.d. is the standard deviation of them.
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n = 10000 r
(k)
n λ̂

(k)
n µ̂

(k)
n σ̂

(k)
n

0-stage 1.0 4.75 -0.07670 1.75522

s.d. 0.0 0.877 0.179 0.152

1-stage 0.18738 12.70 -0.03042 0.34009

s.d. 0.0150 1.283 0.034 0.016

2-stage 0.03205 14.57 -0.03005 0.30008

s.d. 0.0014 1.442 0.029 0.002

3-stage 0.02777 14.91 -0.02997 0.29957

s.d. 0.0003 1.495 0.029 0.002

4-stage 0.02760 14.95 -0.02995 0.29953

s.d. 0.0003 1.503 0.029 0.002

5-stage 0.02759 14.95 -0.02995 0.29952

s.d. 0.0003 1.504 0.029 0.002

6-stage 0.02759 14.95 -0.02995 0.29952

s.d. 0.0003 1.504 0.029 0.002

7-stage 0.02759 14.95 -0.02995 0.29952

s.d. 0.0003 1.504 0.029 0.002

r
(n)
opt/True 0.02752 15.0 -0.03 0.3

Tab. 6.6: The 1st-7th thresholds as the sample size n = 10000. Each estimator is the

mean over the 300 times iterations and s.d. is the standard deviation of them.
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6.5 Theoretical discussion

6.5.1 What is a validity?

In this section, we investigate the asymptotic behavior of r
(k)
n as k → ∞ with fixed

n ∈ N, and the one as n→ ∞ after k → ∞.

According to the numerical studies in the previous section, {r(k)
n }k∈� seems to con-

verge for fixed n to a positive constant, which is near to the r
(n)
opt . Consequently, the

limit of r
(k)
n as k → ∞ becomes a good threshold, and the corresponding filter shows

a high-performance. Therefore, theoretically, we expect at least that the following

properties are hold: there exists a positive constant γn for each n ∈ N such that

lim
k→∞

r(k)
n = γn a.s., (6.22)

lim
n→∞

(
γn +

√
hn

γn

)
= 0. (6.23)

On the first property (6.22), though our greatest hope is γn = r
(n)
opt for each n ∈ N, it

may be impossible while n is finite. Therefore it will be desirable that

∆n := |γn − r
(n)
opt | is sufficiently small for large n. (6.24)

The condition (6.24) is described in Theorem 6.2, (6.33) more clearly.

On the second property (6.23), this is the necessary condition for the asymptotic

filter. Intuitively, the
√
hn-order means the order of the expected variation of Brownian

shocks. Therefore it is desired that the speed of the convergence of the threshold is

slower than
√
hn. In Shimizu and Yoshida [96], they used the asymptotic filter as

{|∆iX
n| > Lhρ

n} for a constant L > 0 and ρ ∈ (0, 1/2), and this threshold certainly

satisfies the condition (6.23). Furthermore, Mancini [64] recently proposed the similar

type of the filter, for a constant L > 0,
{|∆iX

n| > L
√
hn log h−1

n

}
, which also satisfied

the above condition. Similarly we demand this condition to γn.

6.5.2 Mathematical validity

In order to show the mathematical validity (6.22)-(6.24) for our plug-in method, we

first make the following assumption:

A 1 The coefficient a(x) and b(x) of the stochastic differential equation (6.3) is known.
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This assumption implies that the function ε(r) is implicitly known. First we suppose

that ε(r) is known. Therefore we consider the case where

L̂n(r; s) = 2h−1
n ε(r) − Ĵn(r; s). (6.25)

We make some remarks later on the case where ε(r) is unknown.

Let În(r; s) be an estimator of the integral
∫
|z|≤r

f(z) dz constructed in some way

using the filter {|∆iX
n| > s}. We assume the following.

A 2 For any r > 0 and any n ∈ N,

inf
k∈�

În(r; r(k−1)
n ) > 0 a.s., (6.26)

s1 ≥ s2 ⇒ În(r; s1) ≤ În(r; s2) a.s. (6.27)

Remark 6.1 The family of such estimators În(r; s) with above conditions is not

empty. Actually, the density estimator (6.18) with (6.19) satisfies (6.26) if

0 < r(k−1)
n < max

1≤i≤n
|∆iX

n| (6.28)

for any k ∈ N , and (6.27) clearly holds true.

Though the following results are clear from the definition of the function L(r) and

L̂n(r; r
(k−1)
n ), we present them as a lemma since these results will be used repeatedly.

Lemma 6.3 Suppose Condition A1. Then two functions L(r) and L̂n(r; r
(k−1)
n ) :

R+ → R are strictly decreasing in r for any n, k ∈ N，and the equations

L(r) = 0 and L̂n(r; r(k−1)
n ) = 0

have the unique roots r
(n)
opt and r

(k)
n respectively. Therefore, in particular,

r
(n)
opt ≤ r ⇔ L(r) ≤ 0,

r(k)
n ≤ r a.s. ⇔ L̂n(r; r(k−1)

n ) ≤ 0 a.s.

The following theorem shows that the monotonicity of the sequence {r(k)
n }k∈�.

Lemma 6.4 Let k ∈ N. Suppose Conditions A1 and A2. Then it follows that r
(k)
n ≥

r
(k+1)
n for all ω ∈

{
ω ∈ Ω ; r

(k−1)
n ≥ r

(k)
n

}
. Moreover it follows that r

(k)
n ≤ r

(k+1)
n for all

ω ∈
{
ω ∈ Ω ; r

(k−1)
n ≤ r

(k)
n

}
.
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Proof． Fix an arbitrary ω ∈
{
ω ∈ Ω ; r

(k−1)
n ≥ r

(k)
n

}
. From the definition of r

(k)
n ,

2h−1
n ε(r(k)

n ) = Ĵn(r(k)
n ; r(k−1)

n ).

Noticing that Ĵn(r; r
(k)
n ) = În(r/2; r

(k)
n ) + În(2r; r

(k)
n ), it follows from the conditions

(6.26) and (6.27) that

2h−1
n ε(r

(k)
n )

Ĵn(r
(k)
n ; r

(k)
n )

=
Ĵn(r

(k)
n ; r

(k−1)
n )

Ĵn(r
(k)
n ; r

(k)
n )

≤ 1.

Hence

L̂n(r(k)
n ; r(k)

n ) ≤ 0.

Lemma 6.3 yields that r
(k+1)
n ≤ r

(k)
n .

The last half of the statement follows by the same argument as above. �

A 3 The process α, which is the solution to (6.4) satisfies for some p ≥ 1 and any

s, t ≥ 0 with |t− s| < 1 that

E [|αt − αs|p] ≤ Cp|t− s|p/2, (6.29)

where Cp is a positive constant depending on p.

This assumption holds true if, for example, the coefficients a and b are bounded, or if

X satisfies the conditions presented in Chapter 3.

A 4 For any c ∈ (0, 1/2), there exists a constant δ > 0 such that

sup
n∈�

hδ
nJ −1(Lhc

n) <∞

for any L > 0. Similarly, in empirical version,

sup
n,k∈�

hδ
n

Ĵn(Lhc
n; r

(k−1)
n )

<∞ a.s.

Condition A4 is not so restrictive since (6.30) holds true if, for example, F is of polyno-

mial order in a neighborhood of the origin and that the intensity λ is strictly positive.

Moreover Condition (4) is also usually satisfied for a suitable estimator În with (6.26).

Lemma 6.5 Suppose Conditions A1-A4, and that hn < 1 for any n ∈ N. Then，for

any c ∈ (0, 1/2), there exists a constant κ > 0 which is independent of n such that

0 < r
(n)
opt , r

(k)
n < κhc

n (6.30)

for each n ∈ N.
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Proof． Under A4, for any δ > 0, c ∈ (0, 1/2) and some p ≥ 1 with which A3 holds,

there exists a constnat κ1 > 0 which is independent of n such that

κ1 ≥
(

sup
n

hδ
n

J (κ1hc
n)

)1/p

(2Cp)
1/p ≥

(
2Cph

δ
n

J (κ1hc
n)

)1/p

, (6.31)

where Cp is a constant given in A3, since J (κ1h
c
n) is increasing in κ1 for each n.

Fot the constants κ1 and c in (6.31), it follows from Chebysev’s inequality and A3

that

2h−1
n ε(κ1h

c
n)

J (κ1hc
n)

≤ 2Cp

hnJ (κ1hc
n)

(√
hn

κ1hc
n

)p

≤ hp(1/2−c)−1−δ
n

Therefore, taking δ such as 0 < δ < p(1/2 − c) − 1, we find that the last term is less

than 1. This implies by Lemma 6.3 that r
(n)
opt < κ1h

c
n.

Similarly we also see that, for a constant κ2 > 0, L̂n(κ2h
c
n; r

(k−1)
n ) ≤ 0. Hence the

statement holds for κ = κ1 ∨ κ2. �

Although the statement says for any c ∈ (0, 1/2), we can not take c = 1/2 since

it may be that r
(n)
opt ∼ | log hn|

√
hn. Such sequence satisfies r

(n)
opt ≤ κhc

n for sufficiently

large n and any c ∈ (0, 1/2). However r
(n)
opt > κh

1/2
n for sufficiently large n.

Lemma 6.6 Suppose Conditions A1-A3, and fix any c ∈ (0, 1/2) and k, n ∈ N. Then

it follows that

r(k)
n < r(k−1)

n

for all ω ∈
{
ω ∈ Ω ; r

(k−1)
n > κhc

n

}
, where κ is given in Lemma 6.5.

Proof． By the similar argument as in the proof of Lemma 6.5, we see that

2h−1
n ε(r

(k−1)
n )

Ĵn(r
(k−1)
n ; r

(k−1)
n )

= 2
(
nhnĴn(r(k−1)

n ; r(k−1)
n )

)−1
n∑

i=1

P
{
|Xtni

−Xtni−1
| > r(k−1)

n , Jn
i = 0

}

≤ 2Cp

(
hnĴn(κhc

n; r(k−1)
n )

)−1
(√

hn

κhc
n

)p

< 1

for any p ≥ 1.

Lemma 6.4 and 6.6 indicate a way to choose the pilot threshold. If we take r
(0)
n >

κhc
n then the sequence {r(k)

n }k∈� is the decreasing almost surely. Since it is bounded
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from the bottom, it converges to a limit γn. Moreover, even if one chooses the pilot

threshold as being too large, Lemma 6.6 ensures the improvement of the threshold.

Indeed, Lemma 6.5 implies that r
(1)
n ≤ κhc

n, which would be nearer to r
(n)
opt than r

(0)
n

since r
(n)
opt ≤ κhc

n.

The validity (6.22) and the former of the validity (6.23) is obtained by the following

theorem.

Theorem 6.2 Suppose Conditions A1-A4. For arbitrary r
(0)
n satisfying A2 (6.26),

there exists a positive constant γn such that

lim
k→∞

r(k)
n = γn a.s. (6.32)

for any fixed n ∈ N. Moreover

∆n := |γn − r
(n)
opt | ≤ κhc

n (6.33)

for any c ∈ (0, 1/2), where κ is given in Lemma 6.5.

Proof． By Lemma 6.4 and 6.5, we can see that the sequence {r(k)
n }k∈� is mono-

tone and bounded. Therefore r
(k)
n converges to a limit γn ≥ 0. For this γn, we have

L̂n(γn; γn) = 0. If γn = 0 then it must be L̂n(0; 0) = 0. However it contradicts that

L̂n(r; 0) = 2h−1
n > 0 for any r ≥ 0. Hence γn > 0.

The inequality γn ≤ κhc
n is clear by Lemma 6.5. Therefore we obtain (6.33). �

The result (6.33) was also one of the validities stated in (6.24). Therefore we find

that γn is close to r
(n)
opt if the sample size n is sufficiently large, and we can check this

phenomenon in simulation results displayed in Section 6.4.

Let us consider the following quantity:

D (n)
α (r1, r2) =

1

n

n∑
i=1

P{r1 ∧ r2 ≤ |∆iα
n| ≤ r1 ∨ r2}, (6.34)

where α is the solution process to (6.4). If the distribution function of |αt−αs| for any

t, s ≥ 0 is strictly increasing, or if the support of the probability density of |αt − αs| is

R+, then D (n)
α (r1, r2) for fixed n can be a distance between r1 and r2.

Let us consider an estimator of Lévy density f , and make a natural estimator În:

În(r; s) :=

∫
|z|≤r

f̂n(z; s) dz.

In this case, we can estimate D (n)
α (γn, r

(n)
opt) as in the next theorem. Although this

estimate says nothing about the direct estimate of the error ∆n, this gives us indirectly
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the order conditions for γn and r
(n)
opt which should satisfy as the asymptotic thresholds;

Condition (6.23).

Theorem 6.3 Suppose Conditions A1-A3. Let f̄n(z; r) := f̂n(z; r) − f(z). Then

D (n)
α (γn, r

(n)
opt) ≤

√
33

2
κh1+c

n sup
z∈�d

‖f̄n(z; γn)‖L2(P )

for any c ∈ (0, 1/2), where κ is given in Lemma 6.5.

Proof． First, we suppose that r
(n)
opt ≥ γn. By the definition of γn and r

(n)
opt , we have

Ĵn(γn; γn) = 2h−1
n ε(γn)

J (r
(n)
opt) = 2h−1

n ε(r
(n)
opt),

hence we obtain that

D (n)
α (γn, r

(n)
opt) = ε(γn) − ε(r

(n)
opt)

=
hn

2

[
Ĵn(γn; γn) −J (r

(n)
opt)

]
≤ hn

2

[
Ĵn(r

(n)
opt ; γn) −J (r

(n)
opt)

]
.

According to Jensen’s inequality, it follows that

{
D (n)

α (γn, r
(n)
opt)

}2

≤ h2
n(r

(n)
opt)

2

2

[(
1

r
(n)
opt

∫
|z|≤r

(n)
opt/2

f̄n(z; γn) dz

)2

+ 16

(
1

4r
(n)
opt

∫
|z|≤2r

(n)
opt

f̄n(z; γn) dz

)2 ]

≤ h2
nr

(n)
opt

2

[∫
|z|≤r

(n)
opt/2

f̄ 2
n(z; γn) dz + 4

∫
|z|≤2r

(n)
opt

f̄ 2
n(z; γn) dz

]
.

Integrating the both sides by the measure P , we obtain that

D (n)
α (γn, r

(n)
opt) ≤

√
33

2
hnr

(n)
opt sup

z∈E
‖f̄n(z; γn)‖L2(P ),

and Lemma 6.5 yields the consequence．
When r

(n)
opt < γn, the same argument as above is hold since

D (n)
α (γn, r

(n)
opt) = ε(r

(n)
opt) − ε(γn)

≤ hn

2

[
J (r

(n)
opt) − Ĵn(r

(n)
opt ; γn)

]
.

This completes the proof. �
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Let us use the kernel density estimator proposed in Chapter 5 as f̂n:

f̂n(z) =
1

nh1+δ
n

n∑
i=1

K

(
z − ∆zτn

i

δn

)
1H n

i (rn), (6.35)

where δn satisfies δd
n = hδ

n for a constant δ ∈ (0, 1/2) and K is a bounded kernel

with some conditions described in Section 5.3.1. If the true density f is bounded then

we find by the roughly estimate that supz∈�d ‖f̄n(z; γn)‖L2(P ) = O
(
h
−(1+δ)
n

)
for any

sequence γn. Therefore we obtain from Lemma 6.3 that

D (n)
α (γn, r

(n)
opt) ≤ O

(
hc−δ

n

)
. (6.36)

Noticing that c ∈ (0, 1/2) can be taken arbitrarily, we have

D (n)
α (γn, r

(n)
opt) → 0 (n→ ∞)

by taking c > δ. We state this fact as a corollary.

Corollary 6.1 Suppose Conditions A1-A3, and that f is bounded. Let f̂n be the kernel

density estimator (6.35). Then

lim sup
n→∞

D (n)
α (γn, r

(n)
opt) = 0. (6.37)

It remains for us to study the validity (6.23).

First, let us consider the simplest case where α is an one-dimensional Brown-

ian motion: αt = µt + σwt for constants µ ∈ R, σ > 0. Then we can show that√
hn(r

(n)
opt)

−1 = op(1). Actually, considering a sequence rn = Mn

√
hn + op(

√
hn) with

Mn →M ≥ 0, we have

L(rn) = 2h−1
n ε(rn) −J (rn)

≥ 2h−1
n

[∫ ∞

rn

1√
2πσ2hn

e
− (u−µhn)2

2σ2hn du+

∫ −rn

−∞

1√
2πσ2hn

e
− (u−µhn)2

2σ2hn du

]
− 2λ0

∼ 2h−1
n

[∫ ∞

Mn

1√
2πσ2

e−
u2

2σ2 du+

∫ −Mn

−∞

1√
2πσ2

e−
u2

2σ2 du

]
− 2λ0.

Therefore L(rn) > 0 for sufficiently large n, and Lemma 6.3 yields r
(n)
opt > rn a.s. for

sufficiently large n. Since we can take Mn as an arbitrary sequence while Mn →M ≥ 0,

it follows that r
(n)
opt/

√
hn → ∞ a.s. by M → ∞.

In this situation, we can show that
√
hnγ

−1
n = o(1) from Corollary 6.1. For example,

assume that γn ∼M
√
hn for a constant M ≥ 0. For sufficiently large n, we have

D (n)
α (γn, r

(n)
opt)
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= E

[∫ r
(n)
opt

γn

1√
2πσ2hn

e
− (u−µhn)2

2σ2hn du+

∫ −γn

−r
(n)
opt

1√
2πσ2hn

e
− (u−µhn)2

2σ2hn du

]

∼
∫ r

(n,w)
opt /

√
hn

M

1√
2πσ2

e−
(v−µ

√
hn)2

2σ2 dv +

∫ −M

−r
(n)
opt/

√
hn

1√
2πσ2

e−
(v−µ

√
hn)2

2σ2 dv

≥ ∆(M),

where ∆(M) is a positive constant. This contradicts Corollary 6.1. These facts are

proved more generally in the next theorem.

In general case where α is a diffusion process (6.4), we suppose the following con-

dition.

A 5 For any t ≥ 0, the process α(t) has the transition density p(h, x, y): P{α(t)
t+h ∈

A|Xt = x} =
∫

A
p(h, x, y) dy for any h > 0, such that

p(h, x, y) ≥ K√
h

exp

(
ch|x|2 − |x− y|2

ch

)
(6.38)

for constants c > 1 and K > 1.

Although one might think that this condition is not easy to be checked, we can replace

this condition with more concrete one using the coefficients of the SDE (6.4); see Gobet

[35] which gives us a sufficient condition for A5 under the elliptic diffusion case by using

the coefficient of the SDE, and it can be easily checked. However we need only the fact

(6.38) for our purpose, so we dare to impose this condition directly.

We obtain the following theorem, which was one of the validities presented in (6.23).

Theorem 6.4 Suppose Conditions A1-A5 and that f is bounded. Then

lim
n→∞

√
hn

(
γ−1

n + (r
(n)
opt)

−1
)

= 0 a.s. (6.39)

Proof． The process α follows the equation

α
(tni−1)

t = Xtni−1
+

∫ t

tni−1

a(α
(tni−1)
s ) ds+

∫ t

tni−1

b(α
(tni−1)
s ) dws,

for t ∈ (tni−1, t
n
i ], and suppose that α(tni−1) has a transition density satisfying (6.38).

It follows from the lower bound (6.38) that

P
{
rn ≤ ∆iα

n(tni−1) ≤ Rn

}
= E

[
P
{
rn +Xtni−1

≤ α
(tni )
tni

≤ Rn +Xtni−1

∣∣∣Xtni−1

}]
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≥ E

[∫ Rn+Xtn
i−1

rn+Xtn
i−1

K√
hn

exp

(
chn|Xtni−1

|2 − |y −Xtni−1
|2

chn

)
dy

]

= E

[
exp

(
chn|Xtni−1

|2
)∫ Rn/

√
hn

rn/
√

hn

Ke−
y2

c dy

]

≥ E

[∫ Rn/
√

hn

rn/
√

hn

Ke−
y2

c dy

]
.

Putting rn = Mn

√
hn + o(

√
hn), where Mn is an arbitrary sequence satisfying Mn →

M (0 ≤M <∞), and Rn = ∞, then we obtain that

L(rn) ≥ 2h−1
n

∫ ∞

Mn+o(1)

Ke−
y2

c dy − 2λ0 > 0

for sufficiently large n. Hence we obtain that r
(n)
opt > rn a.s. by Lemma 6.3. This implies

that
√
hn(r

(n)
opt)

−1 = op(1).

Let rn = γn ∧ r(n)
opt and Rn = γn ∨ r(n)

opt . Then

D (n)
α (rn, Rn) = P

{
rn ≤ |∆iα

n(tni−1)| ≤ Rn

}
= P

{
rn ≤ ∆iα

n(tni−1) ≤ Rn

}
+ P{−Rn ≤ ∆iα

n(tni−1) ≤ −rn}

≥ E

[∫ Rn/
√

hn

rn/
√

hn

Ke−
y2

c dy +

∫ −rn/
√

hn

−Rn/
√

hn

Ke−
y2

c dy

]
.

If we suppose that γn ≤ r
(n)
opt a.s. for sufficiently large n, we have

lim inf
n→∞

D (n)
α (γn, r

(n)
opt)

≥ E

[
lim inf
n→∞

{∫ r
(n)
opt/

√
hn

γn/
√

hn

Ke−
y2

c dy +

∫ −γn/
√

hn

−r
(n)
opt/

√
hn

Ke−
y2

c dy

}]

≥ 0.

This implies that
√
hnγ

−1
n +

√
hn(r

(n)
opt)

−1 = o(1) since
√
hn(r

(n)
opt)

−1 = o(1), and the right

hand side of the last inequality must be zero from Corollary 6.1. When γn ≥ r
(n)
opt for

sufficiently large n, the same argument holds. This completes the proof. �

6.6 To a practical approach

So far, we have discussed a kind of validity of the plug-in method in the case where

the function ε(r) is known, and we obtained the sufficient conditions for (6.22)-(6.24).
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(i) The property (6.22) and (6.24) hold under A1-A4.

(ii) The property (6.23) holds under A1-A5 and that f is bounded.

Of course we are also interested in the case where ε(r) is unknown; ε(r) is replaced

by ε̂n(r; s). Actually, in Section 6.4, we tried some simulation in such a case, and we

obtained some good results. However we can not show yet the rigorous validity when

ε(r) is unknown. This is the critical problem for the future.

Nevertheless, this method is often useful. Let

L̃n(r; r(k−1)
n ) = 2h−1

n ε̂n(r; r(k−1)
n ) − Ĵn(r; r(k−1)

n ),

and note that

L̃n(r; r(k−1)
n ) = L̂n(r; r(k−1)

n ) + 2h−1
n ∆εn(r; r(k−1)

n ),

where ∆εn(r; r
(k−1)
n ) = ε̂n(r; r

(k−1)
n ) − ε(r) and L̂n is given in (6.25).

If we choose the pilot threshold satisfying r
(0)
n <

√
κhn and (6.28) then many sim-

ulation shows that the estimator b̂n(x; r
(0)
n ) becomes relatively robust; see also Section

5.4.3, and ε̂n(r; r
(k−1)
n ) gives a good approximation of ε(r). Consequently, ∆εn becomes

almost zero, and this implies that finding the root of L̃n(r; r
(0)
n ) = 0 is similar to finding

the root of L̂n(r; r
(0)
n ) = 0 in the 1st-stage. The same argument is possible after this

stage, and the discussion in the previous section can be approximately applied to the

case where ε(r) is unknown.

These are the empirical and intuitive explanation why the plug-in rule with un-

known ε(r) works well, and the more rigorous study is desired. Moreover the case

where the jump part is c(Xt−)dzt, or more general case as in (3.1) should be also

studied in the future.





Appendix A

Central limit theorems for arrays

The aim of this section is to present some versions of the central limit theorem for

general triangular arrays, and give a result which is the most relevant from the point

of view of applications, in particular, the version used in Chapter 3 and 4. The central

limit theorems for arrays are often useful when we discuss the asymptotic normality

for discretely observed time-continuous stochastic processes.

Before we introduce a general result, we present the central limit theorem for mar-

tingale difference arrays under certain assumptions. Then we discuss several types of

sufficient conditions with which some of those assumptions can be substitute. Finally,

we shall introduce the theorem for general arrays with checkable conditions.

All the facts here are well known, and one can find the details on the central limit

theorem for arrays in e.g. Hall and Heyde [39], Jacod and Shiryayev [43] and Shiryayev

[97], and so on. However we give this appendix to make this thesis self-contained.

A.1 Martingale difference arrays

LetXn = {Xn
i }kn

i=1 be a family of 1-dimensional random variables defined on a probabil-

ity space (Ω,F , P ) and let (F n
i )0≤i≤kn be a filtration such that Xn

i is F n
i -measurable

for each n, i ∈ N.

Definition A.1 An array Xn is a martingale difference array if and only if

E[Xn
i |F n

i−1] = 0

for any 1 ≤ i ≤ kn.
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Let Ln =
∑n

i=1X
n
i . Note that this sum becomes a martingale with respect to the

filtration (F n
i )0≤i≤kn if Xn is a martingale difference array. The following basic result

is found in McLeish [69].

Theorem A.1 Suppose that Xn is a martingale difference array satisfying following

conditions:

sup
n∈�

E

[
max

1≤i≤kn

|Xn
i |2

]
<∞, (A.1)

max
1≤i≤kn

|Xn
i | p→ 0, (A.2)

n∑
i=1

(Xn
i )2 p→ 1. (A.3)

Then Ln
d→ N (0, 1).

Condition (A.2) is called the asymptotic negligibility, which is equivalent to the

weak Lindberg condition:
∑kn

i=1(X
n
i )21{|Xn

i |>ε}
p→ 0 as n→ ∞ for all ε > 0, since

P

{
max

1≤i≤kn

|Xn
i | > ε

}
= P

{
kn∑
i=1

(Xn
i )21{|Xn

i |>ε} > ε2

}
.

Moreover they are also equivalent to

kn∑
i=1

P
{|Xn

i | > ε|F n
i−1

} p→ 0;

see Shiryayev [97], Theorem VII.7.2. The negligibility can be lead from the following

Lindberg condition: for all ε > 0,

kn∑
i=1

E
[
(Xn

i )21{|Xn
i |>ε}

] → 0 (n→ ∞) (A.4)

by the Chebyshev’s inequality. Condition (A.4) implies (A.1) since

E

[
max

1≤i≤kn

|Xn
i |2

]
≤ ε2 +

kn∑
i=1

E
[
(Xn

i )21{|Xn
i |>ε}

]
(A.5)

for all ε > 0. Furthermore some authors have imposed the following conditional Lind-

berg condition instead of them:

kn∑
i=1

E
[
(Xn

i )21{|Xn
i |>ε}|F n

i−1

] p→ 0 (n→ ∞). (A.6)

This also yields (A.1) and, at the same time, this implies the asymptotic negligibility,

too. In fact, we note the following lemma
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Lemma A.1 Let {Gi}0≤i≤n be a filtration and Ai ∈ Gi be an event for each 0 ≤ i ≤ n.

Then for any ε > 0,

P

{
n⋃

i=0

Ai

∣∣∣G0

}
≤ ε+ P

{
n∑

i=1

P {Ai|Gi−1} > ε
∣∣∣G0

}
. (A.7)

See Hall and Hyde [39], Lemma 2.5 for the proof. This lemma and the conditional

version of Chebyshev’s inequality yields that

P

{
max

1≤i≤kn

|Xn
i | > ε

}
≤ ε+ P

{
n∑

i=1

E
[
(Xn

i )21{|Xn
i |>ε}|F n

i−1

]
> ε3

}
.

This inequality and (A.6) implies (A.2).

Clearly Condition (A.6) can be replaced by the conditional Liapnov condition: for

a constant δ > 0,

kn∑
i=1

E
[|Xn

i |2+δ|F n
i−1

] p→ 0 (n→ ∞). (A.8)

Condition (A.3) corresponds to the variance estimates, and under Condition (A.6),

we can replace it by the following conditional variance version:

kn∑
i=1

E
[
(Xn

i )2|F n
i−1

] p→ 1 (n→ ∞). (A.9)

In fact, by the same argument as in the proof of Theorem 2.23 in Hall and Hyde [39],

we have, without any martingale properties, that

P

{∣∣∣∣∣
kn∑
i=1

{
(Xn

i )2 −E
[
(Xn

i )2|F n
i−1

]}∣∣∣∣∣ > η

}
≤ ε

η

for arbitrary ε > 0. Therefore such replacements of conditions are possible for any

array Xn.

For the usefulness to obtain our desired general version later, we show the revised

version of Theorem A.1.

Theorem A.2 Suppose that Xn is a martingale difference array satisfying Condition

(A.9). Moreover assume Condition (A.6) or (A.8). Then Ln
d→ N (0, 1).
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A.2 General triangular arrays

In this section, we do not suppose that Xn is the martingale difference, that is, the

sequence Xn is a general triangular array. In order to use the preceding results, it is

useful to decompose Ln as follows:

Ln =
kn∑
i=1

Y n
i +

kn∑
i=1

E
[
Xn

i |F n
i−1

]
,

where Y n
i = Xn

i −E
[
Xn

i |F n
i−1

]
. Then Y n is a martingale difference.

Suppose that Xn satisfies Conditions (A.1) - (A.3), and
∑kn

i=1{E
[
Xn

i |F n
i−1

]}j p→ 0

for j = 1, 2. Then Y n satisfies (A.6) and (A.9). In fact,

kn∑
i=1

E
[
(Y n

i )21{|Y n
i |>ε}|F n

i−1

]

≤ 2
kn∑
i=1

E
[
(Xn

i )21{|Y n
i |>ε}|F n

i−1

]
+ 2

kn∑
i=1

{
E
[
Xn

i |F n
i−1

]}2
.

Here we have to show

kn∑
i=1

E
[
(Xn

i )21{|Y n
i |>ε}|F n

i−1

] p→ 0.

kn∑
i=1

E
[
(Xn

i )21{|Y n
i |>ε}|F n

i−1

]

=
kn∑
i=1

E
[
(Xn

i )21{2(Xn
i )2+2{E[Xn

i |Fn
i−1]}2>ε2}|F n

i−1

]

≤
kn∑
i=1

E
[
(Xn

i )21{|Xn
i |>ε/2}|F n

i−1

]
+

kn∑
i=1

E
[
(Xn

i )2|F n
i−1

]
1{|E[Xn

i |Fn
i−1]|>ε/2}

≤
kn∑
i=1

E
[
(Xn

i )21{|Xn
i |>ε/2}|F n

i−1

]
+

kn∑
i=1

E
[
(Xn

i )2|F n
i−1

] kn∑
i=1

1{|E[Xn
i |Fn

i−1]|>ε/2}

≤
kn∑
i=1

E
[
(Xn

i )21{|Xn
i |>ε/2}|F n

i−1

]
+

kn∑
i=1

E
[
(Xn

i )2|F n
i−1

] kn∑
i=1

4{E[Xn
i |F n

i−1]}2ε−2

p→ 0.

Therefore we obtain that
∑kn

i=1E
[
(Y n

i )21{|Y n
i |>ε}|F n

i−1

] p→ 0. Furthermore

kn∑
i=1

E
[
(Y n

i )2|F n
i−1

]
=

kn∑
i=1

E
[
(Xn

i )2|F n
i−1

]− kn∑
i=1

{
E
[
Xn

i |F n
i−1

]}2 p→ 1.
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These considerations lead the fact that Ln
d→ N (0, 1).

Generally, we have the next theorem.

Theorem A.3 Let C be a d × d deterministic matrix, and ε > 0. Suppose a d-

dimensional triangular array Xn satisfies the following conditions:

kn∑
i=1

E
[
Xn

i |F n
i−1

] p→ 0, (A.10)

kn∑
i=1

∣∣E [
Xn

i |F n
i−1

]∣∣2 p→ 0, (A.11)

n∑
i=1

E
[
Xn

i (Xn
i )∗|F n

i−1

] p→ C, (A.12)

kn∑
i=1

E
[|Xn

i |21{|Xn
i |>ε}|F n

i−1

] p→ 0. (A.13)

Then Ln
d→ Nd(0, C).

The similar version of this theorem is also found in Shiryayev [97], Theorem VII.8.1

where the sufficient conditions are essentially the same as in the above ones. Although

a more general version; the case where C is a random variable, is found in Hall and

Hyde [39], Theorem 3.4 without the detailed proof, the above version is enough for our

purpose in this thesis.

Remark A.1 Instead of (A.13), it is sometimes convenient to assume (A.8), which

is more restrictive than (A.13) but is relatively tractable in applications. Conditions

(A.10) and (A.11) in Theorem A.3 can be replaced by the following:

kn∑
i=1

∣∣E [
Xn

i |F n
i−1

]∣∣ p→ 0. (A.14)

Indeed, it derives (A.10) obviously, and

kn∑
i=1

∣∣E [
Xn

i |F n
i−1

]∣∣2

=

kn∑
i=1

∣∣E [
Xn

i (1{|Xn
i |>ε} + 1{|Xn

i |≤ε})|F n
i−1

]∣∣2

≤ 2

kn∑
i=1

E
[|Xn

i |21{|Xn
i |>ε}|F n

i−1

]
+ 2

kn∑
i=1

∣∣E [
Xn

i 1{0<|Xn
i |≤ε}|F n

i−1

]∣∣2
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≤ 2

kn∑
i=1

E
[|Xn

i |21{|Xn
i |>ε}|F n

i−1

]
+ 2

kn∑
i=1

∣∣∣E [
Xn

i 1{0<|E[Xn
i |Fn

i−1]|≤ε}|F n
i−1

]∣∣∣2

= 2

kn∑
i=1

E
[|Xn

i |21{|Xn
i |>ε}|F n

i−1

]
+ 2ε

kn∑
i=1

∣∣E [
Xn

i |F n
i−1

]∣∣
p→ 0

under Conditions (A.13) and (A.14).



Appendix B

Weak Convergence in C-space

This appendix is also to make this thesis self-contained as well as Appendix B. This

chapter will help us to understand the sufficient condition for the uniform convergence

of random functions on the compact parameter space, which was appeared in Chapter

3 and 4; see Remark B.1. We referred to Billingsley [10], Ibragimov and Has’minskii

[41] and Kallenberg [47] for writing this appendix.

B.1 Weak Convergence and tightness

The aim of this section is to introduce the notion of the tightness, which is one of the

good properties for a probability measure. When we consider the weak convergence for

probability measures in a general metric space, the concept of the tightness is essential.

In this section, we particularly consider the C-space; the space which consists of every

continuous functions on some compact metric space and endowed with the supremum

norm, and describe the relation between the tightness and the weak convergence. In

the last section, we introduce some tractable tightness criteria.

First of all, we give several types of definitions of the tightness.

Definition B.1 A probability measure P on a measurable space (E, E ) is tight if and

only if, for every ε > 0, there exists a compact set K ∈ E such that

P (K) > 1 − ε. (B.1)

Moreover, a family of distributions Π on E is tight if and only if, for every ε > 0,

there exists a compact set K ∈ E such that the inequality (B.1) is hold for every P ∈ Π

Furthermore E-valued random elements {Xλ}λ∈Λ is tight if and only if the family of

distributions {Pλ}λ∈Λ is tight.
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Theorem B.1 If the space E is a Polish space, that is, separable and complete, then

every probability measure P on (E, E ) is tight．

The tightness of a sequence of random variables {Xn}n∈� is equivalent to the fol-

lowing:

sup
K:compact

lim inf
n→∞

P{Xn ∈ K} = 1. (B.2)

Indeed if we assume (B.2) then, for every ε > 0, there exists a compact K ′ such that

lim inf
n→∞

Pn(K ′) > 1 − ε, where Pn = P ◦ (Xn)−1. Therefore, for sufficiently large m,

inf
n>m

Pn(K ′) > 1 − ε．On the other hand, for every n ≤ m, there exists a compact set

K ′′ that is independent of n such that inf
1≤n≤m

Pn(K ′′) > 1 − ε. Consequently, putting

K = K ′ ∪K ′′, we obtain that Pn(K) > 1 − ε for every n. The necessity will be clear．
One of the simplest cases is when E = R. In this case, the tightness of {Xn}n∈� is

obviously equivalent to

lim
r→∞

sup
n
P{Xn > r} = 0. (B.3)

This is called the uniformly tightness.

In the sequel, let (K, d) be a metric space with a metric d, and suppose K is

compact. Moreover let (S, ρ) be a metric space with metric ρ, and suppose S is complete

and separable．We denote by C(K,S) the set of all continuous functions from K to

S endowed with the uniform metric ρ̂(x, y) = supt∈K ρ(xt, yt). We sometimes write

C(K,S) as simply C. Furthermore, denote by πt the mapping πt : C(K,S) � x �→
xt ∈ S. Then the following theorem holds.

Theorem B.2

B(C(K,S)) = σ{πt; t ∈ K}, (B.4)

where B(X) means the set of all Borel subsets of X.

The σ-algebra in the right-hand side is called Kolmogorov’s σ-algebra. This theorem

holds when K is not compact if we choose a metric ρ suitably; see Ito [42], Theorem

5.2.

By Theorem B.2, that x ∈ C(K,S) is measurable is equivalent to that xt is a

random variable. Indeed, if we suppose x is a measurable mapping from a probability

space (Ω,F , P ) to C; x−1B(C) ⊂ F，then x−1
t S = x−1(π−1

t S ) = x−1(B(C)) ⊂ F .

This implies that xt is F -measurable. The mapping x is called an S-valued random
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function in the sense that an S-valued function xt is determined for given ω, and this

is so-called an S-valued stochastic process. We also call it an S-valued random element

as the generalization of the term a “random variable”.

Lemma B.1 Let (S,S ) be a measurable space and T be a compact subspace of R+.

Let X = {Xt}t∈T and Y = {Tt}t∈T be S-valued stochastic processes, that is, X and Y

are C(T, S)-valued random elements. Then X
d
= Y is equivalent to (Xt1 , . . . , Xtn)

d
=

(Yt1 , . . . , Ytn) for every t1, . . . , tn ∈ T and n ∈ N.

By this lemma, we find that a distribution of a kind of stochastic processes can be

completely characterized by its finite dimensional distribution. Generally, the necessary

and sufficient condition that a sequence of distributions on an infinite dimensional

space as (R∞,B∞) converges to a distribution weakly is that any finite dimensional

distribution of its distribution family converges to the finite dimensional distribution

of the corresponding limit; see Billingsley [10] for details．
Similarly, one might think that Lemma B.1 seems to imply that a sequence of

distributions of any stochastic process converges weakly to a limit if and only if a

sequence of their finite dimensional distributions converges weakly to the finite dimen-

sional distribution of the corresponding limit. However the intuition is not correct;

see a counterexample in Billingsley [10], page 20. Since a dimension of the path space

of such a stochastic processes is higher than the one of R
∞, we need a further tight

condition. In fact, the relatively compactness described below is important in the weak

convergence in stochastic processes.

Definition B.2 A sequence of random elements {Xn}n∈� is relatively compact if and

only if, for an arbitrary subsequence, there exists a sub-subsequence that converges

weakly.

We write Xn fd−→ X if the finite dimensional distributions of a sequence of random

elements Xn’s converges weakly to that of X.

Theorem B.3 Let X and {Xn}n∈� be C(K,S)-valued random elements. Then Xn d→
X if and only if {Xn}n∈� is relatively compact and Xn fd−→ X.

Proof． First, we show the necessity. Consider the following canonical projection π:

πt1,... ,tk : X ∈ C(K,S) �→ (X(t1), . . . , X(tk)) ∈ R
k.

Since this is clearly continuous, πt1,... ,tk(X
n)

d→ πt1,... ,tk(X)．Therefore Xn fd−→ X. The

relatively compactness is obvious.
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Next, we show the sufficiency. Assume that Xn
d

�→ X. Then, for every ε > 0, there

exist N ′ ⊂ N and a continuous bounded function f : C(K,S) → R such that |Ef(Xn)−
Ef(X)| > ε for any n ∈ N ′. On the other hand, by the relatively compactness, there

exists a sub-subsequenceN ′′ ⊂ N ′ such that {Xn}n∈N ′′ converges to a process Y weakly.

By the assumption that Xn fd−→ X, (n ∈ N ′′), we see that Y
d
= X by Theorem B.2.

This implies that Xn d→ X , n ∈ N ′′. This contradicts the assumption. �

There are Prohorov’s theorem and Ascoli-Arzerà’s theorem to judge the relatively

compactness.

Theorem B.4 (Prohorov) If an arbitrary family Π of probability measures on a mea-

surable space (E, E ) is tight then Π is relatively compact. Moreover a space E is Polish

then a family Π that is relatively compact is tight.

Theorem B.5 (Ascoli-Arzerà) Let

w(x, h) = sup{ρ(xt, xs); d(s, t) ≤ h} (B.5)

for any x ∈ C(K,S) and h > 0. Suppose that there exists a dense subset D of K．
Then the following (i) and (ii) are equivalent:

(i) A ⊂ C(K,S) is relatively compact, that is, Ā is compact.

(ii) For any t ∈ D, πtA is a relatively compact subset of S and lim
h→0

sup
x∈A

w(x, h) = 0.

In particular,
⋃

t∈K πtA is a relatively compact subset of S.

B.2 Tightness criteria

In this section, we remain to suppose that (K, d) be a metric space with a metric d, and

that K is compact. Moreover suppose (S, ρ) be a metric space with metric ρ, and that

S is complete and separable．We denote by C(K,S) the set of all continuous functions

from K to S endowed with the uniform metric ρ̂(x, y) = supt∈K ρ(xt, yt).

There is the following criterion for the tightness; see Kallenberg [47] Theorem 14.5.

Theorem B.6 (Tightness Criteria) C(K,S)-valued random elements {Xn}n∈� are

tight if and only if S-valued random variables {Xn(t)}n∈� are tight for any t ∈ K and

lim
h→0

lim sup
n→∞

E[w(Xn, h) ∧ 1] = 0, (B.6)

where w is given in (B.5).
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Proof． Assume that {Xn}n∈� is tight. Then, for arbitrary ε > 0, there exits a

compact set B ⊂ C(K,S) such that

lim sup
n→∞

P{Xn ∈ Bc} < ε.

By the Ascoli-Arzerà’s theorem, for the above ε, there exists a constant h > 0 such

that w(x, h) ≤ ε for any x ∈ B. This implies that {w(Xn, h) > ε} ⊂ {Xn ∈ Bc},
hence lim supn→∞ P{w(Xn, h) > ε} < ε．The tightness of each family of marginal

distributions is clear from Theorem B.3 and B.4.

Next we assume that the equality (B.6). Then w(Xn, h) → 0 a.s. as h → 0 since

the path of Xn is continuous almost surely. By (B.6), for every ε > 0, there exist

some h0 and n0 such that supk≤n0
E[w(Xk, h) ∧ 1] < ε for any h ≥ h0. Hence (B.6) is

equivalent to

lim
h→0

sup
n∈�

E[w(Xn, h) ∧ 1] = 0.

Therefore, for every ε > 0, there exist h1, h2, . . . > 0 such that

sup
n∈�

P{w(Xn, hk) > 2−k} ≤ 2−k−1ε, k ∈ N. (B.7)

Moreover, since the family of distributions of Xn(t) for each t ≥ 0 is tight, there exist

compact sets C1, C2, . . . ⊂ S such that

sup
n
P{Xn(tk) ∈ Cc

k} ≤ 2−k−1ε, k ∈ N, (B.8)

where {t1, t2, . . .} is a dense subset in K. Here, putting

B =
⋂
k∈�

{x ∈ C(K,S); x(tk) ∈ Ck, w(x, hk) ≤ 2−k}

we see from Ascoli-Arzerà’s theorem again that B̄ is compact. The equality (B.7) and

(B.8) yield that supn∈� P {Xn ∈ Bc} ≤ ε, which means that {Xn}n∈� are tight. �

The following lemma, which is easily deduced from the above theorem, is useful in

applications.

Corollary B.1 Let {Xn}n∈� be C(K,S)-valued random elements, and suppose that

the path of Xn(t) is differentiable with respect to t ∈ K. Then Condition (B.6) holds

true if

sup
n∈�

E

[
sup
t∈K

|∂tX
n(t)|

]
<∞. (B.9)
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Proof．

lim
h→0

lim sup
n→∞

E[w(Xn, h) ∧ 1] = lim
h→0

lim sup
n→∞

E

[
sup

|t−t′|≤h

|Xn(t) −Xn(t′)| ∧ 1

]

= lim
h→0

lim sup
n→∞

E

[
sup

|t−t′|≤h

|∂tX
n(t̃)||t− t′| ∧ 1

]

≤ lim
h→0

h sup
n∈�

E

[
sup
t∈K

|∂tX
n(t)|

]
�

Remark B.1 If Xn(·) d→ x(·) in C(K,S) and x ∈ C(K,S) is deterministic then

Xn(·) P→ x(·), which implies that, for any ε > 0, P {ρ̂(Xn, x) > εn} → 0 as n → ∞,

that is,

sup
t∈K

ρ (Xn(t), x(t))
P→ 0.

as n→ ∞.

There are other types of tightness criteria. In the sequel, we suppose that C(Rd, S)

is endowed with the topology of the uniform convergence on compacts.

Theorem B.7 Let {Xn}n∈� be C(Rd, S)-valued random elements. Then {Xn}n∈� is

tight in C(Rd, S) if the following conditions are hold:

(i) {Xn(0)}n∈� is tight in S．

(ii) For constants a, b, c > 0, sup
n∈�

E|ρ(Xn(s), Xn(t))|a ≤ c|s− t|d+b, s, t ∈ R
d.

The following criterion is seen in Ibragimov and Has’minskii [41] Appendix I, The-

orem 20.

Theorem B.8 Let {Xn}n∈� be C(Rd, S)-valued random elements. Then {Xn}n∈� is

tight in C(Rd, S) if there exist constants m ≥ r > d, H > 0 such that the following

conditions are hold:

(i) E[|ρ(Xn(t), 0)|m] ≤ H.

(ii) sup
n∈�

E|ρ(Xn(t + h), Xn(t))|m ≤ H|h|r.

This is sometimes more tractable than Theorem B.7 in applications; it would be

easier to check (i) of Theorem B.8 than to check (i) of Theorem B.7.
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Ph. D. dissertation, Albert Ludwigs University of Freiburg .

[114] van der Vaart, A. W. (1998). Asymptotic statistics, Cambridge Series in Statis-

tical and Probabilistic Mathematics, 3. Cambridge University Press.

[115] Yoshida, N. (1988). On asymptotic mixed normality of the maximum likelihood

estimator in a multidimensional diffusion process, Statistical theory and data

analysis, II (Tokyo, 1986), North-Holland, Amsterdam, 559–566.



196 BIBLIOGRAPHY

[116] Yoshida, N. (1990). Asymptotic behavior of M-estimator and related random

field for diffusion process, Ann. Inst. Statist. Math., 42, no. 2, 221–251.

[117] Yoshida, N. (1992). Asymptotic expansions of maximum likelihood estimators for

small diffusions via the theory of Malliavin-Watanabe, Probab. Theory Related

Fields, 92, no. 3, 275–311.

[118] Yoshida, N. (1992). Estimation for diffusion processes from discrete observations,

J. Multivar. Anal., 41, 220–242.

[119] Yoshida, N. (1992). Asymptotic expansion for statistics related to small diffu-

sions, J. Japan Statist. Soc., 22, no. 2, 139–159.

[120] Yoshida, N. (1993). Malliavin calculus and higher order statistical inference, Sta-

tistical sciences and data analysis (Tokyo, 1991), 22, 175–180.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Photoshop 5 Default Spaces)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


