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Abstract

Survival Energy Model (SEM) is a new approach to the mortality prediction in-
troduced by Shimizu et al. [17]. The approach can give a cohort-wise distribution
function of the time of death, which is defined as the first hitting time of a “survival
energy” diffusion process to zero. In this paper, we propose a new SEM with some
improvements of the prediction procedure given in [17]. Moreover, we shall discuss
some practical advantages of SEM in practice.
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1 Introduction

The last several decades, statistical evidence show that the life time of human being is
getting longer and longer in many countries. For example, the expected lifetime in Japan
has been increasing, and the one in 2020 is 85 years old although 60 years old in 1950. Such
a rapid change of longevity is called the “Longevity Revolution”, e.g., [22]. On one hand, this
trend makes the human life selective and valuable for individuals. On the other hand, we are
facing on many problems related to medical, economical, and social welfare situation. For
example, the problem of financial collapse of the national pension has been a critical issue
in Japan. In such a situation, the mortality prediction is becoming an important worldwide
social issue.

Since the early 20th century, the mortality prediction has been studied by many authors,
and a certain methodology seems to be already established in practice. In most of mortality
models, the “death” is regarded the first event of a time-inhomogeneous Poisson process:
let Tx be the remaining lifetime of an individual of age x, it is assumed that

P(Tx > t+ 1 |Tx > t) = exp

(
−
∫ t+1

t

µ(x, s) ds

)
,

where µ(x, t) is a (possibly stochastic) intensity function or called the force of mortality in
insurance context. The existing studies are going to find a model for µ(x, t). For example,
some deterministic mortality models such as the Gompertz, the Makeham, or the Heligman-
Pollard law were presented in earlier years; see, e.g., Olivieri [14], and many stochastic
mortality models are recently presented; e.g., Biffis [1], Cairns et al. [5], Hainaut and
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Devolder [10], Biffis et al. [2], Blackburn and Sherris [3] and the references therein. Moreover,
by assuming that µ(x, ·) is constant between (t, t+ 1], say m(x, t), they are going to model
the mortality m(x, t) itself, and any established classical models correspond to such a type;
the Lee-Carter model [8], the Renshaw-Haberman model [16], the CBD model [6, 7], among
others. We call these approaches reduced-form approach because it considers the death is
just a stochastic event.

However, Shimizu et al. [17] proposed a structural approach under the “Survival Energy
Hypothesis”, which is an assumption that believes the existence of the survival energy for
human beings, and the death occurs if the energy vanishes. Shimizu et al. [17] used some
inhomogeneous diffusion (ID) processes as the survival energy model (SEM) cohort-wisely,
say Xc = (Xc

t )t≥0 with the cohort c, which is called ID-SEM:

Xc
t = xc +

∫ t

0

Uc(s) ds+

∫ t

0

Vc(s) dWs, (1.1)

where xc is a positive constant corresponding to the initial survival energy, Uc and Vc are
deterministic functions on R+ and W is a Wiener process. They define the time of death
by the first hitting time for Xc to zero: τ c := inf{t > 0 |Xc

t < 0}. They consider some
parametric models for U and V , and illustrated that the mortality function:

qc(t) := P(τ c ≤ t) (1.2)

can fit very much to the empirical distribution function of the time of death. This indicates
that the SEM has a hight potential to propose a good parametric family to predict the
future’s mortality functions nevertheless it is just a fictitious assumption.

In this paper, we propose a new SEM with a procedure to improve the prediction.
Moreover, we shall discuss some advantages of the SEM compared to the classical regression
type models in the reduced-form approach. Finally, we shall introduce the SEM project,
which gives the cohort/country-wise mortality functions explicitly with the values of the
parameters in a web site.

2 A general procedure of mortality prediction via SEM

Let Xc = (Xt)t≥0 be an underlying survival energy process of cohort c, and qc(·) given in
(1.2) be the mortality function of that cohort. In the SEM approach, we consider a specific
parametric model Xc,θ with a parameter θ ∈ Θ, where Θ is a parameter space that is open
and bounded in Rp. Then we have a parametric model for the mortality function:

qc(t, θ) = P(τ cθ ≤ t),

where τ cθ := inf{t > 0 |Xc,θ
t ≤ 0}. We assume that, for each cohort c, there exists the true

value of the parameter, say θc, such that

qc(·, θc) ≡ qc(·).

2.1 Parameter estimation

For the each SEM, the unknown parameter θc is estimated by the least-squares fitting
between the explicit (conditional) mortality function for a suitably chosen threshold S > 0:

qc(t|S) := P(τ c ≤ t | τ c > S) =
qc(t)

1− qc(S)
.

2



Note that the above qc(·|S) should be actually estimated by the individual data τ ci , which
is the time of death of i-th individual in the cohort c, based on national statistics:

q̂c(t|S) :=

nc∑
i=1

1{S<τc
i ≤t}

nc∑
i=1

1{τc
i >S}

, (2.1)

where nc is the population in the cohort c, and this converges to the true qc(t|S) uniformly
in t when nc → ∞. However, such individual data are not available in practice. However,
a version (or an approximation) can be produced from the Human Mortality Database
(HMD) [20] as follows.

Data Processing from HMD. (R-code for this transform is available at [21]) Let q
(c)
x

be the death probability within 1 year of age x in ‘calender year’ c, which are directly
found in HMD [20]. Moreover, let qcx be the mortality rate in 1 year of age x with ‘birth
year’ c (cohort).
In the life table of the ‘calender year’ c, it holds that

q
(c)
0 = qc0, q

(c)
1 = qc−1

1 , . . . , q(c)ω = qc−ω
ω ,

where ω is the final age of the life table (ω = 110 in HMD).

(1) From those, we have that

qck = q
(c+k)
k , k = 2, 3, . . . , ω.

(2) Compute the survival probability pck := 1− qck for k = 0, 1, . . . , ω. Then

P(τ c > t|τ c > S) = pcS · pcS+1 · · · pct−1

for t = S + 1, S + 2, . . . , ω.

(3) As a consequence, we have

q̂c(t|S) = 1−
t−1∏
k=S

pck,

for t = S + 1, S + 2, . . . , ω.

Definition 2.1. For a given S > 0 with qc(S) > 0 and td > · · · > t2 > t1 > S, the
(conditional) LSE for θc is given by

θ̂c := argmin
θ∈Θ

d∑
i=1

|qc(ti, θ|S)− q̂c(ti|S)|2 .

The consistency and the asymptotic normality of the LSE are shown in [17]. We shall
recall them (the statements in [17] have some typos).
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Theorem 2.1. Suppose that qc(t, ·|S) ∈ C1(Θ) for each t > 0 and S > 0. Moreover, for a
given S > 0, suppose the following identifiability condition holds true:

qc(ti, θ|S) = qc(ti, θ
′|S) for i = 1, 2, . . . , d ⇒ θ = θ′. (2.2)

Then the LSE θ̂c has the weak consistency as the sample size of the corresponding cohort
nc in (2.1) increases:

θ̂c
P−→ θc, nc → ∞.

Theorem 2.2. Suppose the same assumptions as in Theorem 2.1. Moreover, suppose
qc ∈ C2(Θ) and Θ is a convex subset of Rm. Then,

√
nc(θ̂c − θc)

D−→ R−1
d Qd ·Nd(0,Σ), nc → ∞

where

Qd = (∂θqc(t1, θc|S), . . . , ∂θqc(td, θc|S) ∈ Rm ⊗ Rd,

Rd =

d∑
i=1

[
(∂θqc)(∂

⊤
θ qc)(ti, θc|S) + {qc(ti, θ)− qc(ti, θc)}∂2

θqc(ti, θc|S)
]
∈ Rm ⊗ Rm,

and the variance-covariance matrix Σ = (σij)1≤i,j≤m is given by

σij =
1

q2c(S)
Λ(ti, tj) +

qc(ti)qc(tj)

q4c(S)
Λ(S, S)− qc(ti)

q3c(S)
Λ(tj , S)−

qc(tj)

q3c(S)
Λ(ti, S)

with Λ(x, y) = qc(x ∧ y)− qc(x)qc(y) and qc = 1− qc.

2.2 Prediction of mortality functions with a modification

Suppose that we have some estimated values of θc for some cohorts c1 < c2 < · · · < cm, say
θ̂c1 , θ̂c2 , . . . , θ̂cm . We suppose that the future’s parameter θc is determined in the following
form:

θc = h(c) + ϵc, ϵc ∼ Np(0, σ
2
ϵ ), (2.3)

for a deterministic (unknown) mean function h. Assuming that the estimated parame-

ter θ̂c1 , θ̂c2 , . . . , θ̂cm are realizations of θci (i = 1, . . . ,m), we estimate h that is suitably

parametrized. Once h is estimated, say ĥ, we will predict a parameter θc′ for a future’s
cohort c′ by

θ̂c′ = ĥ(c′), c′ > cm, (2.4)

and we can obtain the predictive mortality function qc′(·, θ̂c′). In particular, the α-prediction
interval for θc′ is also obtained by

Îc
′,m

α :=
[
θ̂c′ − zα/2σ̂ϵ, θ̂c′ + zα/2σ̂ϵ

]
, (2.5)

where Σ̂ is an estimator of Σ in (2.3), and zα is (1 − α)-percentile of N(0, 1). That is, it
follows that

lim
m→∞

P
(
θc′ ∈ Îc

′,m
α

)
= α

4



Remark 2.1 (Modified mortality function). Although Shimizu et al. [17] use qc′(·, θ̂c′) itself
for the predicted mortality function, we shall adjust parameters within the α-prediction
interval so that the mortality function can fit the existing data for the cohort c′. That is,
when the empirical data q̂c′(t|S) for t = t1, . . . , td′ already exists, we reselect the predictor
so that

θ̃c′ = arg min
θ∈Îc′,m

α

d′∑
i=1

|qc′(ti, θ|S)− q̂c′(ti|S)2, (2.6)

where Îc
′,m

α is given in (2.5). We shall use qc′(·, θ̃c′) as a predicted mortality function,
which can often improve the prediction. We call it the modified predicted mortality function
(MPMF). Later, we shall compare the direct prediction (2.4) with the above modification
(2.6) in some examples.

3 SEM with an explicit mortality function

3.1 ID-SEM

The original SEM is given as a time-inhomogeneous diffusion process (1.1), which is called
ID-SEM in Shimizu et al. [17], and it has a restriction such that

Uc(t)

V 2
c (t)

=
κc

2
∈ R, (3.1)

with inft>0 V
2
c (t) > 0. Shimizu et al. [17] propose the following parametric models for Uc

and Vc:

Uc(t, θc) = αc + βc exp (γc(t− Tc))1{t≥Tc};

Vc(t, θc) =

√
2

κc
Uc(t, θc),

where the parameter space Θ of θc = (αc, βc, γc, κc) is given by

Θ ⊂ {(α, β, γ, κ) ∈ R4 |α < 0, β < 0, γ > 0, κ < 0}.

Thanks to (3.1), the mortality function has a closed expression; see Molini et al. [?].

Theorem 3.1. The mortality function of ID-SEM is given by

qIDc (t, θc) = 1−
∫ ∞

0

f(z, t|θc) dz, t ≥ 0,

where f(z, t|θc) = Gθc(z − xc, t)− e−κcxcGθc(z + xc, t);

Gθc(y, t) :=
1

2
√
πS(t, θc)

exp

(
− (y −M(t, θc))

2

4S(t, θc)

)
;

M(t, θc) =

∫ t

0

U(s, θc) ds; S(t, θc) =
1

2

∫ t

0

V 2(s, θc) ds.
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3.2 A new SEM: IG-SEM

We say that a random variable Y follows an inverse Gaussian distribution:

Y ∼ IG(a, b),

with mean a and variance a3/b if the probability density is given by

fY (y; a, b) =

√
b

2πy3
exp

(
−b(y − a)2

2a2y

)
, y > 0.

Definition 3.1 (IG-SEM; Inverse Gaussian). We say Xc follows IG-SEM if

Xc
t = xc − Y c

t , t ≥ 0, (3.2)

where xc > 0 is an initial energy, Y c ∼ IG(Λc, σc) is an inverse Gaussian process with
mean function Λc and a parameter σc > 0, that is, Y c

0 = 0 a.s. and Y c has independent
increments. Moreover, for any t > s > 0 and an increasing function Λc with Λc(0) = 0, it
follows that

Y c
t − Y c

s ∼ IG
(
Λc(t)− Λc(s), σc(Λc(t)− Λc(s))

2
)
.

Remark 3.1. Note that if Λ(t) = t, then Y is the inverse Gaussian Lévy process, which
is a spectrally positive pure-jump subordinator. Hence IG-SEM has a jump in the path of
survival energy although the path of ID-SEM is continuous.

Such a process is used to modeling the time of system failure in engineering, where
the failure occurs at τ c if the accumulating damages Y c

t exceeds a certain threshold xc:
τ c = inf{t > 0 |Y c

t > xc}, which is the same idea as our SE for human death; see Ye and
Chen [19]. Then the mortality function is given by the following theorem.

Theorem 3.2. The mortality function for IG-SEM is given by

qIGc (t, θc) = Φ

(√
σc

xc
(Λθc(t)− xc)

)
− e2σcΛθc (t)Φ

(
−
√

σc

xc
(Λθc(t) + xc)

)
,

where Φ(x) =
∫ x

−∞
1√
2π

e−z2/2 dz.

Later, we shall take the mean function Λθc as

Λθc(t) = eact + bct− 1, θc = (ac, bc, σc) ∈ Θ,

where
Θ ⊂ {(a, b, σ) ∈ R3 | a > 0, b > 0, σ > 0}.

4 Advantages of SEM

4.1 Actuarial notation, computation and estimation

In actuarial mathematics, there are many complicate and unique notations only for actuaries.
For example, the “single (net) premium of m-payment n-year terminable annuity” is written

as ä
(m)
x:n , and the “sigle (net) premium of n-year term immediate insurance” is written as

Ā1
x:n in the classical actuarial notation. Such a notation called the Halo notation, which

was accepted at the 2nd International Congress of Actuaries (ICA1898), seems hard for
non-actuarial people to understand, and it seems to make hard to approach to the actuarial
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mathematics for beginners of this field even for mathematicians or statisticians. However,
rewriting them in terms of a mortality function, which we say SEM notation, one can easily
understand the meaning of them. For example, the simple notation such as tpx is usually
explained in a sentence that “the probability that an individual of age x survives for t years”,
but it may be not so clear for mathematician. If we write it in terms of the mortality function
such that

tpx :=
1− qc(x+ t)

1− qc(x)
= P(τ c > x+ t|τ c > x),

then we can say it is a “conditional survival function at age x”, and the meaning will be
much clearer for mathematicians and statisticians. Moreover, the usual researchers may not
be familiar with the term “forth of mortality” of age x at time t, which is usually written as
µx+t. However, it would be better for statisticians to say the “conditional hazard function
of age x”:

µx+t := − d

dt
logP(τ c > x+ t|τ c > x)

(
=

∂tqc(x+ t)

1− qc(x+ t)

)
Although there are many complicate “Halo notation”, it would be convenient for non-
actuarial users to rewrite them in terms of the mortality function. Then, anybody can
easily compute actuarial quantities cohort-wisely once the explicit form of qc is given: e.g.,

ä
(m)
x:n =

1

m

mn−1∑
s=0

v
s
m
1− qc

(
x+ s

m

)
1− qc(x)

; Ā1
x:n =

∫ n

0

vt
∂tqc(x+ t)

1− qc(x)
dt,

where v is a discount factor and ∂θqc is the derivative of the mortality function qc, among
others. We shall give many examples of those transformations in Appendix.

The largest advantages for expression in terms of the mortality functions are in statistical
estimation for actuarial quantities. Consider the single premium of the whole life insurance
at age x, say Ax, it is written in both ways as follows:

Ax :=

∞∑
k=1

vkk−1|qx+k−1 (Halo notation)

=

∞∑
k=1

vk
qc(x+ k)− qc(x+ k − 1)

1− qc(x)
(SEM notation)

where v ∈ (0, 1) is a discount factor. If we use the Lee-Carter model, then it is written as

Ax =

∞∑
k=1

vk [1− exp (−mx+k−1,t(αx+k, βx+k))] ,

where mx,t is the (crude) mortality parametrized by

mx,t(αx, βx) = exp (αx + βxκt + ϵx,t) ,

with parameters αx, βx, which are to be estimated and κt, which is to be predicted usually by
a time series model including some unknown parameters, and ϵx,t, which is a noise process.
In this case, we have to estimate many parameters {(αy, βy)}y=x,x+1,... and those in κt,
which can make the statistical error for Ax increase. However, if we use SEM, then the
cohort-wise computation

Ax =

∞∑
k=1

vk
qc(x+ k, θc)− qc(x+ k − 1, θc)

1− qc(x, θc)

requires only one parameter estimation for θc because θc is independent of k = 1, 2, . . . ,
which can make the statistical error less than the classical mortality models.
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4.2 Sensitivity analysis

As is already seen in the previous section, most of the actuarial quantities are written in
the functionals of the mortality function qc(t, θc) with a few unknown parameters θc. This
situation is good for sensitivity analysis with respect to the parameter change.

Consider an actuarial quantity for age x and cohort c represented by a Stieljes-type
integral form such as

H(θ) :=

∫ ∞

0

Qc,x(t|θ) dh(t), θ ∈ Θ

where h is a function on [0,∞), and

Qc,x(t|θ) :=
qc(x+ t, θ)

1− qc(x, θ)
,

and the meaning of integral sign is that
∫∞
0

:=
∫
[0,∞)

. We shall suppose the exchangeability

of
∫∞
0

and the differentiation ∂θ up to we need:

∂θH(θ) =

∫ ∞

0

∂θQc,x(t|θ) dh(t) < ∞, θ ∈ Θ,

and this is continuous in θ.
Note that most of actuarial quantities are written in this form; see Tables ??–??. For

example, Ax, the single premium of the whole life insurance at age x is given by taking

h(t) =

∞∑
k=1

vk
(
1{t≥k} − 1{t≥k−1}

)
, t ≥ 0,

where v ∈ (0, 1). Moreover, for its immediate payment version

Āx =

∫ ∞

0

vt
∂tqc(x+ t)

1− qc(x)
dt

is given by H(θ) with

h(t) = −vt − 1{t≥0}.

Indeed, it follows by the integration-by-parts that

H(θ) =

∫ ∞

0

qc(x+ t, θ)

1− qc(x, θ)
(−vt)′dt− qc(x, θ)

1− qc(x, θ)

=

[
−vt

qc(x+ t, θ)

1− qc(x, θ)

]∞
t=0

+

∫ ∞

0

vt
∂tqc(x+ t, θ)

1− qc(x, θ)
dt− qc(x, θ)

1− qc(x, θ)

=

∫ ∞

0

vt
∂tqc(x+ t, θ)

1− qc(x, θ)
dt = Āx.

We are interested in a difference H(θ) −H(θ0) for different values of parameters θ and
θ0. By Taylor’s formula,

H(θ)−H(θ0) =

∫ ∞

0

∂θQc,x(t|θ0) dh(t) · (θ − θ0) + o(θ − θ0).

The integral
∫∞
0

∂θQc,x(t|θ0) dh(t) can be evaluated by direct computation.
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For our LSE θ̂c of θ0 given in Theorem 2.2 and the sample size nc to obtain the estimator,
we have by the delta method in statistics that

√
nc

(
H(θ̂c)−H(θc)

)
=

∫ ∞

0

∂θQc,x(t|θc) dh(t) ·
√
nc(θ̂c − θc) + op(1)

→d Np(0,Σc,x), nc → ∞,

where the asymptotic variance Σc,x is estimable by estimators of Rd, Qd,Σ in Theorem 2.2

and the plug-in estimator

∫ ∞

0

∂θQc,x(t|θ̂c) dh(t). This can yield a confidence interval of

H(θc):

P

(
H(θc) ∈

[
H(θ̂c)− zα/2

Σ̂x,c√
nc

, H(θ̂c) + zα/2
Σ̂x,c√
nc

])
≈ 1− α,

where zα is the upper α-percentile of the standard normal distribution and Σ̂c,x is an esti-
mator of the asymptotic variance Σc,x.

5 Concluding remarks: SEM project

We have the SEM project, successive researches after Shimizu et al. [17], which is a plan
to make lists of cohort-wise (modified) mortality functions of each country, using ID- and
IG-SEMs (or others if a better model is found). The mortality functions are predicted using
data from HMD [20]. Thanks to those, anyone can use mortality functions of required cohort
immediately without any computation, and we hope that it will be an alternative mortality
database after HMD [20].

Visiting the website

https://www.shimizu.sci.waseda.ac.jp/smzlab/semproject/.

one can already find the Japanese mortality functions (male and female) in each cohort with
values of parameters. We hope that many practitioners and researchers can enjoy those
functions to compute cohort-wise premiums and liabilities of insurance, measuring longevity
risks, and demographic researches.
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